User Tools

Site Tools


spin:esc201_hs2019

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
spin:esc201_hs2019 [2019/10/07 14:28]
stadel [Lectures]
spin:esc201_hs2019 [2019/12/09 14:51]
stadel [Assignments]
Line 14: Line 14:
 30. Sept. 2019: {{ :​spin:​sins1-03.pdf |Ordinary Differential Equations}} 30. Sept. 2019: {{ :​spin:​sins1-03.pdf |Ordinary Differential Equations}}
  
-7. Oct. 2019: {{ :​spin:​sins1-04.pdf |symplectic ​Integrators}}+7. Oct. 2019: {{ :​spin:​sins1-04.pdf |Symplectic ​Integrators}} 
 + 
 +14. Oct. 2019: {{ :​spin:​sins1-05.pdf |Gravitational Many Body Problem: The Solar System}} 
 + 
 +21. Oct. 2019: {{ :​spin:​sins1-06.pdf |Population Growth, Chaos and Fractals}} 
 + 
 +28. Oct. 2019: {{ :​spin:​sins1-07.pdf |3-D Graphics, Lorenz Attractor}} 
 + 
 +4. Nov. 2019: {{ :​spin:​sins1-08.pdf |Laplace Equation, Jabobi and SOR Methods}} 
 + 
 +11. Nov. 2019: {{ :​spin:​sins1-09.pdf |Bi-linear(cubic) Interpolation,​ Electron Beams!}} 
 + 
 +18. Nov. 2019: {{ :​spin:​sins1-10.pdf |Diffusion Equation and Numerical Stability}} 
 + 
 +25. Nov. 2019: {{ :​spin:​sins1-11.pdf |Hyperbolic PDEs: LAX & CIR Upwind Schemes}} 
 + 
 +2. Dec. 2019: {{ :​spin:​sins1-12.pdf |Finite Volume Methods in 1-D and 2-D}} 
 + 
 +9. Dec. 2019: {{ :​spin:​sins1-13.pdf |2-D Hydrodynamics: ​ Sedov Blast Wave}}
 ====== Assignments ====== ====== Assignments ======
  
Line 65: Line 83:
 2. Predator-prey behavior with Forward Euler Method, Midpoint Runge-Kutta and (optional for comparison) Runge-Kutta,​ **until 06.10.2019** 2. Predator-prey behavior with Forward Euler Method, Midpoint Runge-Kutta and (optional for comparison) Runge-Kutta,​ **until 06.10.2019**
  
-3. Solve [[ https://​www.youtube.com/​watch?​v=tNpuTx7UQbw | Simple Pendulum]] equation ​using [[ https://​www.youtube.com/​watch?​v=rT6Whl96N4g | Symleptic Leapfrog ​]] and Midpoint Runge-Kutta,​ compare both methods ** until 13.10.2019 **+3. Make a phase space plot for the Simple Pendulum using Symleptic Leapfrog and Midpoint Runge-Kutta,​ compare both methods ** until 13.10.2019 ** 
 + 
 +4. Solar System Orrery {{ :​spin:​solsystdata.dat.zip | Initial Conditions }}, {{ :​spin:​read_planets.zip | Loading Script }} 
 +** until : Sunday 20.10.2019 (21:00)** 
 + 
 +5. Logistic Equation Plots (optional), **Feigenbaum Plot**, Julia Set Plot (optional), **Mandelbrot Set Plot**, due 
 +** until : Sunday 27.10.2019 (21:00)** 
 + 
 +6. 3D Graphics and Lorenz Attractor due ** Sunday 03.11.2019 (21:00) ** 
 + 
 +7. Electrostatics in vacumm due ** Sunday 10.11.2019 ** 
 + 
 +8. Bi-linear(cubic) Interpolation,​ Electron Beams due ** 17.11.2019 ** 
 + 
 +9. Design Competition:​ Time-of-Flight Instrument, due ** 24.11.2019 ** 
 + 
 +10. Compare Finite Difference Upwind and Corner Transport Upwind (finite volume) in 2-D using a Gaussian on a 2-D periodic mesh. due ** 8.12.2019 ** 
 + 
 +11. Last exercise: 2-D Sedov Taylor Blast Wave. Define a 2-D **periodic** grid of variables (rho, rho_u, rho_v, E). Set P = e = 1e-5, rho_u = rho_v = 0, and rho = 1.0 everywhere. Set one cell (either in the corner, or center of the grid) to have e = 1. Adapt the timestep delta_t at each step to satisfy the Courant condition (given by the maximum of D_max across the grid). The timestep should be very small at first and increase with time as the shock wave expands. 
spin/esc201_hs2019.txt · Last modified: 2019/12/09 14:53 by stadel