
(Recursive) Ray Tracing
Antialiasing
Motion Blur
Distribution Ray Tracing
other fancy stuff

(Recursive) Ray Tracing
Antialiasing
Motion Blur
Distribution Ray Tracing
other fancy stuff

18 Apr. 2000

2Computer Graphics 15-462

Assumptions

• Simple shading (typified by OpenGL, z-buffering, and
Phong illumination model) assumes:

– direct illumination (light leaves source, bounces at most once, enters eye)
– no shadows
– opaque surfaces
– point light sources
– sometimes fog

• (Recursive) ray tracing relaxes that, simulating:
– specular reflection
– shadows
– transparent surfaces (transmission with refraction)
– sometimes indirect illumination (a.k.a. global illumination)
– sometimes area light sources
– sometimes fog

3Computer Graphics 15-462

Ray Types for Ray Tracing

• We’ll distinguish four ray types:
– Eye rays: orginate at the eye
– Shadow rays: from surface point toward light source

– Reflection rays: from surface point in mirror direction

– Transmission rays: from surface point in refracted direction

4Computer Graphics 15-462

Ray Tracing Algorithm

– send ray from eye through each pixel

– compute point of closest intersection with a scene surface
– shade that point by computing shadow rays

– spawn reflected and refracted rays, repeat

5Computer Graphics 15-462

Specular Reflection Rays

Reflected Ray

Eye

N

•An eye ray hits a shiny surface
– We know the direction from which a

specular reflection would come, based
on the surface normal

– Fire a ray in this reflected direction
– The reflected ray is treated just like

an eye ray: it hits surfaces and spawns
new rays

– Light flows in the direction opposite to
the rays (towards the eye), is used to
calculate shading

– It’s easy to calculate the reflected ray
direction

P

A Shiny Surface

Note: arrowheads show the direction
in which we’re tracing the rays, not
the direction the light travels.

6Computer Graphics 15-462

Specular Transmission Rays

• To add transparency:
– Add a term for light that’s coming from within the object

– These rays are refracted (bent) when passing through a boundary
between two media with different refractive indices

– When a ray hits a transparent surface fire a transmission ray into
the object at the proper refracted angle

– If the ray passes through the other side of the object then it bends
again (the other way)

7Computer Graphics 15-462

Refraction

• Refraction:
– The bending of light due to its different velocities through different

materials
– rays bend toward the normal when going from sparser to denser materials

(e.g. air to water), away from normal in opposite case

• Refractive index:
– Light travels at speed c/n in a material of refractive index n

» c is the speed of light in a vacuum
» c varies with wavelength, hence rainbows and prisms

– Use Snell’s law n1 sin θ1 = n2 sin θ2 to derive refracted ray direction
» note: ray dir. can be computed without trig functions (only sqrts)

MATERIAL INDEX OF REFRACTION
air/cacuum 1
water 1.33
glass about 1.5
diamond 2.4

n

n1

n2

θ1

θ2

8Computer Graphics 15-462

Ray Genealogy
EYE

L1 L2

Obj1

Obj2

Obj3

Shadow Ray

Other Ray

Eye

Obj1

RAY TREERAY PATHS (BACKWARD)

L1

L2

T R
Obj2

Obj3
L1

L2

L1

L2
R

T R

X X

X

9Computer Graphics 15-462

Ray Casting vs. Ray Tracing

Ray Casting -- 1 bounce

Ray Tracing -- 2 bounce Ray Tracing -- 3 bounce

10Computer Graphics 15-462

Writing a Simple Ray Tracer

Raytrace() // top level function
for each pixel x,y

color(pixel) = Trace(ray_through_pixel(x,y))

Trace(ray) // fire a ray, return RGB radiance
object_point = closest_intersection(ray)
if object_point return Shade(object_point, ray)
else return Background_Color

11Computer Graphics 15-462

Writing a Simple Ray Tracer (Cont.)

Shade(point, ray) /* return radiance along ray */
radiance = black; /* initialize color vector */
for each light source

shadow_ray = calc_shadow_ray(point,light)
if !in_shadow(shadow_ray,light)

radiance += phong_illumination(point,ray,light)
if material is specularly reflective

radiance += spec_reflectance *
Trace(reflected_ray(point,ray)))

if material is specularly transmissive
radiance += spec_transmittance *
Trace(refracted_ray(point,ray)))

return radiance

Closest_intersection(ray)
for each surface in scene

calc_intersection(ray,surface)
return the closest point of intersection to viewer
(also return other info about that point, e.g., surface
normal, material properties, etc.)

12Computer Graphics 15-462

Problem with Simple Ray Tracing: Aliasing

13Computer Graphics 15-462

Aliasing

• Ray tracing gives a color for every possible point in the
image

• But a square pixel contains an infinite number of points
– These points may not all have the same color
– Sampling: choose the color of one point (center of pixel)
– This leads to aliasing

» jaggies
» moire patterns

– aliasing means one frequency (high) masquerading as another (low)
» e.g. wagon wheel effect

• How do we fix this problem?

14Computer Graphics 15-462

Antialiasing

• Supersampling
– Fire more than one ray for each pixel (e.g., a 3x3 grid of rays)

– Average the results using a filter
– Can be done adaptively

» divide pixel into 2x2 grid, trace 5 rays (4 at corners, 1 at center)

» if the colors are similar then just use their average
» otherwise recursively subdivide each cell of grid

» keep going until each 2x2 grid is close to uniform or limit is reached
» filter the result

15Computer Graphics 15-462

Adaptive Supersampling:
Making the World a Better Place

• Is adaptive supersampling the answer?
– Areas with fairly constant appearance are sparsely sampled (good)
– Areas with lots of variability are heavily sampled (good)

• But alas...
– even with massive supersampling visible aliasing is possible when the sampling grid

interacts with regular structures

– problem is, objects tend to be almost aligned with sampling grid

– noticeable beating, moire patterns, etc… are possible

• So use stochastic sampling
– instead of a regular grid, subsample randomly (or pseudo)

– adaptively sample statistically

– keep taking samples until the color estimates converge

– jittering: perturb a regular grid

16Computer Graphics 15-462

Supersampling

17Computer Graphics 15-462

Temporal Aliasing

• Aliasing happens in time as well as space
– the sampling rate is the frame rate, 30Hz for NTSC video, 24Hz for

film
– fast moving objects move large distances between frames
– if we point-sample time, objects have a jerky, strobed look

• To avoid temporal aliasing we need to filter in time too
– so compute frames at 120Hz and average them together (with

appropriate weights)?
– fast-moving objects become blurred streaks

• Real media (film and video) automatically do temporal anti-
aliasing

– photographic film integrates over the exposure time

– video cameras have persistence (memory)
– this shows up as motion blur in the photographs

18Computer Graphics 15-462

Motion Blur

• Apply stochastic sampling to time as well as space
• Assign a time as well as an image position to each ray
• The result is still-frame motion blur and smooth animation
• This is an example of distribution ray tracing

19Computer Graphics 15-462

The Classic Example of Motion Blur

• From Foley et. al. Plate III.16

• Rendered using distribution ray
tracing at 4096x3550 pixels, 16
samples per pixel.

• Note motion-blurred reflections and
shadows with penumbrae cast by
extended light sources.

20Computer Graphics 15-462

Distribution Ray Tracing

• distribute rays throughout a pixel to get spatial antialiasing
• distribute rays in time to get temporal antialiasing (motion blur)
• distribute rays in reflected ray direction to simulate gloss
• distribute rays across area light source to simulate penumbras (soft

shadows)
• distribute rays throughout lens area to simulate depth of field
• distribute rays across hemisphere to simulate diffuse interreflection

(radiosity)

• a.k.a. “distributed ray tracing” or stochastic ray tracing
• a form of numerical integration

• aliasing is replaced by less visually annoying noise!
• powerful idea! (but can get slow)

21Computer Graphics 15-462

Gloss and Highlights
• Simple ray tracing spawns only one reflected ray
• But Phong illumination models a cone of rays

– Produces fuzzy highlights

– Change fuzziness (cone width) by varying the shininess parameter

• Can we generate fuzzy highlights?
– Yes: via shadow rays

– But there’s a catch
» we can’t light reflected from the fuzzy highlight onto other objects

• A more accurate model is possible using stochastic sampling
– Stochastically sample rays within the cone

– Sampling probability drops off sharply away from the specular angle

– Highlights can be soft, blurred reflections of other objects

22Computer Graphics 15-462

Soft Shadows
• Point light sources produce sharp shadow edges

– the point is either shadowed or not

– only one ray is required

• With an extended light source the surface point may be partially visible to it
(partial eclipse)

– only part of the light from the sources reaches the point

– the shadow edges are softer

– the transition region is the penumbra

• Distribution ray tracing can simulate this:
– fire shadow rays from random points on

the source

– weight them by the brightness

– the resulting shading depends on
the fraction of the obstructed
shadow rays

source

surface

opaque
object

shadow
rays

23Computer Graphics 15-462

Soft Shadows

source

surface

opaque
object

shadow
rays

fewer rays,
more noise

more rays,
less noise

24Computer Graphics 15-462

Depth of Field

• The pinhole camera model only approximates real optics
– real cameras have lenses with focal lengths
– only one plane is truly in focus
– points away from the focus project as disks
– the further away from the focus the larger the disk

• the range of distance that appear in focus is the depth of
field

• simulate this using stochastic sampling through different
parts of the lens

Image

Lens

Surface

25Computer Graphics 15-462

Beyond Ray Tracing

• Ray tracing ignores the diffuse component of incident
illumination

– to achieve this component requires sending out rays from each
surface point for the whole visible hemisphere

– this is the branching factor of the recursive ray tree

• Even if you could compute such a massive problem there
is a conceptual problem:

– you will create loops:
» point A gets light from point B
» point B also gets light from point A

26Computer Graphics 15-462

Doing it Really Right (or trying)

• The real solution is to solve simultaneously for incoming
and outgoing light at all surface points

– this is a massive integral equation

• Radiosity (in 15-463) deals with the easy case of purely
diffuse scenes

• Or, you can sample many, many complete paths from light
source to camera

– Metropolis Light Transport (Veach and Guibas, Siggraph 1997)

27Computer Graphics 15-462

Diffuse Illumination

From Veach and Guibas, Siggraph ‘97

28Computer Graphics 15-462

Caustics

From Veach and Guibas, Siggraph ‘97

