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Mixing and Segregation

5.1. Introduction

Liquids have a well-known predisposition for miscibility.! Dry granular materials,
by contrast, are notorious for being difficult to mix homogeneously.? Two granular
materials differing by their density, shape, size, or even by their micromechanical
properties (such as coefficient of elastic restitution and friction), exhibit a dis-
tinct propensity for segregation. This phenomenon is a fundamental property of
the granular state and an unending source of frustration in industry. Whenever a
mixture undergoes a flow, a vibration, or a shearing action, the components tend
to separate partially or completely, depending on the circumstances. By analogy
with chemical reactions, we may say that under the influence of various stimuli
a granular mixture inexorably tends to self-organize so as to locally reconstruct
clusters of identical particles.

As we have pointed out in the Introduction to this book, the segregation of dry
granular materials can be routinely observed even in the most primitive table-top

ISince liquids are made of particles subject to Brownian motion, thermal agitation alone produces
mixing. As pointed out in Chapter 1, the Brownian motion of granular particles is entirely negligible.
Another source of energy is then required to achieve mixing. Vibration is a logical candidate, even
though the final result is often the exact opposite of what is being sought!

2The concept of “homogeneous mixture” needs to be clarified in a granular material. A mixture
composed of a fraction o of granules A and 8 of granules B (with &+ = 1) is said to be homo-
gencous on a scale A if a volume A* contains the two ingredients in the right proportions. We can
appreciate that optimum homogeneity will be achieved when the smallest scale A, for which the
mixture can still be considered homogeneous in the sense just defined, is of the order of the size of
the largest of the two types of particle.
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FIGURE 96. Oyama's horizontal drum rotates around its axis. An initially homogenous
granular mixture segregates in vertical bands with a spatial periodicity A.

experiments by shaking a mixture of different grains (wheat, corn, rice, salt, are
all good candidates) in a test tube.? Likewise, farmers know very well that tilling
fields causes large rocks, in seemingly endless supply, to work their way up to
the surface. Peasants in India take advantage of the segregation properties of dry
granulars by shaking their harvest of chickpeas in baskets in order to separate
them from other materials. When Brazil nuts, mixed with other smaller nuts, are
transported in pick-up trucks over the rough back roads of South America, they
invariably end up on top of the load.* In short, the phenomenon of segregation in
dry granulars is universally recognized, even though it may not be well understood.

The first recorded observation of segregation in a three-dimensional medium
was described by Oyama in 1939.

5.1.1. Oyama’s Cylindrical Drum

Oyama’s experiment is schematically illustrated in Figure 96 [89]. It consists in
mixing two granulars of the same type but of different sizes and colors. For instance,
we may use glass beads, some of which are transparent and 500 pm in diameter,
while the others are dark-colored and 100 um in diameter. They are mixed in
equal volumes and placed in an elongated cylindrical container which is rotated
horizontally around its axis.

As Oyama reported, the large and small beads divide themselves in vertical
strata, as depicted in Figure 96. The process starts with just a few slow rotations
of the drum. After a sufficiently long time, the segregation continues, first into
three, and then five zones typically observed after about an hour. The phenomenon
takes place only when the rotation speed is rather slow, although nobody really

3The importance of usi ng dry materials cannot be overemphasized. It is essential that any interaction
with the ambient fluid be negligible, If not, the problems are of a radically different nature. Well-
designed cement trucks, for instance, are perfectly capable of adequately mixing gravel of various
sizes with cement and water.

“The example of Brazil nuts has become a paragon in matlers of granular segregation following the
publication in Physical Review Letters of a paper entitled “Why do Brazil nuts are on top?”. To speak
of “Brazil nut” phenomenon has become synonymous with the problem of segregation by size.
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knows why. Spectacular as it may be, this experiment remains poorly understood. It
continues to be the object of numerous studies, some of which rely on sophisticated
techniques such as nuclear magnetic resonance (see Section 3.2.3) [90].

Be that as it may, the experiment underscores the amazing efficacy of segregation
by rotation or, to be more precise, by shearing. As mentioned earlier, segregation is
a very general property of mixtures in which particles are in motion relative to one
other. A careful observation of the mechanisms potentially involved has led some
authors to distinguish at least two different modes of granular segregation. They are:

e Segregation by Vibration. The relative motion of the particles is imparted
by shaking the container—usually in a vertical direction. When the situation
involves small particles in the midst of larger ones, we may further distinguish
segregation by convection, by arch effects, and by percolation.

o Segregation by Shearing. Here, segregation is caused by a differential flow
of overlaid sheets, in the manner described in Section 2.4.2. A useful picture
is that of a bulldozer churning large rocks to the surface of the ground, as is
commonly observed in earth-moving projects.

Given our limited understanding of this phenomenon, it is important to acknowl-
edge that the details of the mechanisms at play remain for the most part a mystery.
No one has a handle on the fundamental laws governing the segregation of objects
with different densities or masses, or with different mechanical coefficients. That
goes both for segregation by vibration and by shearing. Likewise, very little is
known about the segregation of objects of different sizes, except perhaps in the
context of a few simulations of the type to be discussed in Chapter 6. For reasons
that are quite easy to understand, most researchers currently working on this prob-
lem have limited themselves—at least up to now—to segregation by size. That is in
fact, the primary topic covered in this chapter. As we are about to see, even this
issue turns out to be anything but trivial. In a first step, we will restrict our focus
to the segregation of a single particle differing in size from all the other particles
that constitute its environment. The purpose of this step-by-step approach is to
hopefully extract the fundamental laws governing the physics of the process. It
appears to be a general property of granular materials to want to expel the largest
objects out toward the periphery. For instance, shaking a granular medium causes
large particles to migrate toward the top of a pile.

5.1.2. Potential Energy of a Heterogeneous Pile

Before attacking more specifically the mechanism of demixing in vibrated or
sheared granulars, it is important to realize, starting from elementary considera-
tions of the energy of heterogeneous piles, that segregation by size is indeed a
phenomenon characteristic of these materials. As it turns out, this property can
be understood as a consequence of Reynolds’s dilatancy principle, consistent with
arguments developed in Section 3.1.3.

We begin with a few general observations about stacks of spheres (in three
dimensions) or of cylinders (in two dimensions). Consider two spheres of masses
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M and m, and radii R and r (Wwith M > m and R > r), stacked on top of each

other. If the large sphere is on top, the potential energy E, of the stack can be
wrilten as

E, =mgr + Mg(R + 2r),

where the horizontal base on which the edifice rests is taken as reference. Both
spheres are assumed to be made of the same material and, therefore, have the same
volumetric density. This additional piece of information leads to an expression for
the potential energy in terms of sizes only

Epo<r4+R4+2rR3.

Interestingly, this expression is not symmetrical in » and R, which means that the
energy depends on whether the large or the small sphere is on top. Not surprisingly,
the configuration with the small sphere on top is energetically favorable. We may
find a degree of solace in this result. Yet, our intuition clearly fails us when it comes
to the phenomenon of segregation by size which, as already indicated, invariably
drives the largest—hence, heaviest—particles toward the top.

Superposition of Stacks—Two Compact Stacks

We next consider the stack shown in Figure 97. The structure, depicted here in
two dimensions, is made of two kinds of marble made of the same material. The
marbles differ only by their diameter and are arranged in two zones stacked in a
compact triangular lattice (which gives it maximum compactness, in accordance
with Section 3.1.3). They are placed in a cylindrical container of cross-sectional
area S. We designate by V and v, respectively, the volumes of each of the zones
occupied by marbles of radii R and r. Assuming that the largest marbles occupy
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FIGURE 97. Two types of particles A and B of different sizes are stacked in superposed
layers. In the absence of any structural defect, A/B and B/A configurations are equivalent
from an energy point of view.
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FIGURE 98. Two stacking modes for two-dimensional structures. The triangular config-
uration (b), being as compact as possible, has a lower potential energy than configuration
(a). It is therefore energetically favorable and more stable.

the upper part of the container, the potential energy of the entire pile is given
by

T (e p)roeny
Eyot —+(v+ - | Vx(w+ V).
2 2
This time, which type of marble is on top has no bearing from an energy point of
view, and there is no reason to anticipate any segregation, at least as long as inter-
face effects are absent. This result is obvious, inasmuch as two layers of identical
density are always in equilibrium.

Without the benefit of a more detailed analysis, we may begin to suspect that
structural defects in a lattice made of particles of different sizes may have some-
thing to do with the tendency of large particles to work their way back up. To
explore this possibility, we return to two configurations already discussed in Sec-
tion 3.1.3. The relevant structures are reproduced in Figure 98.

An elementary analysis of the two stacks shows that the triangular lattice is—
based on simple energy arguments—more probable and stable than its square
counterpart. As we have seen, the compact triangular lattice is the only one to
exhibit characteristics consistent with Reynolds’s dilatancy principle. The reader
will recall that a compact stack subjected to any distortion can only respond by
expanding, which increases its potential energy. If we realize that distorting a
compact triangular lattice necessarily entails the creation of defects in the stack,
we may legitimately inquire whether such defects may tend to concentrate in the
lower or the upper portion of the pile. In particular, what can energy arguments
tell us about this question?

Where Are the Defects Concentrated?

We start from a structure made of identical spheres in a state of maximum com-
pactness, and assume that a number of defects are somehow created either in the
upper or in the lower region, both of which have the same volume v. Our intuition
suggests that the energetically favorable situation is to have the defects near the top.
We can verify this by calculating the potential energy in both cases. The potential

5.1 Introduction 159

Faults
by« M
SErsTestees
Compacted
Zone

FIGURE 99. Defects are created when a large disk is inserted into a two-dimensional stack.
The photograph was obtained by back-illuminating a real stack. The lower part of the stack
remains compacted, while the triangular symmetry of the upper part is greatly disturbed by
the introduction of the large disk (after [93]).

energy is denoted E,, if the defects are in the upper region, and E pi otherwise. If
the defects involve an increase in volume dv, the calculation indicates that

Ey —Ep, cvdv > 0,

which implies that defects near the top are indeed energetically preferred. Another
way to express the same result is that, in a cylindrical container, the potential
energy is minimum when the less dense material is on top.

An equivalent two-dimensional experimental configuration, similar to those we
have discussed in Chapter 3, is easy to implement with suitable provisions for
agitation.” All we need to do is to introduce into the container a single larger disk
of the same volumetric density as the rest of the pile, and we can readily witness
the phenomenon just described. As demonstrated in Figure 99, the intruder causes
local distortions in the lattice by creating defects which tend to migrate to the upper
part of the structure.®

When viewed in this context, the process of segregation by size emerges as one
of the consequences of the dilatancy principle. The introduction of an intruder
necessarily causes a local distortion of the lattice manifesting itself in a local
expansion. The expanded and, therefore, less dense portion of the pile tends to

>The meaning of the phrase “suitable agitation” deserves to be thought out carefully. It may be said
that shaking (or vibrating) a complex granular edifice enables us to explore perhaps not all but at least
many of the possible configurations of a pile. Several simulation approaches (notably the Monte Carlo
technique, to be discussed in Chapter 6) capitalize on this observation by minimizing the energy after
each perturbational event through various relaxation processes. i

6 : « » . : : -
We will often use the term “intruder” to refer to a particle whose size or other properties differ from
those of the “normal” sea of particles which, for the sake of simplicity. we will consider uniform.
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move toward the top, dragging the intruder along with it. This would suggest that
the shape of the intruder may play a crucial role in the process of segregation,
depending on how readily it may fit in the surrounding lattice.

There are too many potential objections to accept such a crude explanation at
face value. In an attempt to get a better grasp of the phenomenon, we will have to
refine our understanding of the successive relaxation states of a pile undergoing
segregation. Until then, the one idea that should stand out and be remembered in
what follows is that size segregation implies defects created by the intruder in its
environment.

5.2. Segregation by Vibration

As pointed out on several occasions already, shaking or vibrating a mixture of
particles for the purpose of studying the process of segregation is a most efficient
and reliable method. It is routinely used both in industry and in the laboratory.
Indeed, vibrating a collection of particles is the best way to explore systematically
alarge number of possible configurations. We might add that this mode of excitation
lends itself readily to numerical computer simulations, an advantage that is not to
be overlooked. The frequency and amplitude of the vibrations are easy to control,
and a typical experiment boils down to following what happens to a large and
clearly marked particle in its environment. By adding a few tracers to the matrix,
we can even get a fairly clear picture of how the surrounding particles move about.

5.2.1. Simulation of Segregation by Size

Before proposing a model that can account for the behavior of a vibrated two-
dimensional pile composed of a single intruder in an otherwise homogeneous
environment, it is useful to pause and consider Figure 100, as it highlights a
number of remarkable characteristics of such structures.

For starters, we note that both computer-generated and real-life stacks feature
stacking faults in the form of distortions and dislocations in the upper part of the
structure. This is fully consistent with our previous elementary energy consid-
erations. In addition, we see that the perturbation caused by an intruder‘whose
size is different from that of the particles composing the matrix develops in an
essentially triangular pattern. We might think that this pattern is simply a con-
sequence of the symmetry characteristic of the type of two-dimensional lattice
considered here. However, as we shall soon see, this property is not restricted to
two-dimensional lattices. Computers can serve as an inexhaustible source of syn-
thetic three-dimensional piles, whose geometry can be easily studied [91]. It turns
out that, in this case too, defects are generated in the upper part of the pile, and their
geometry is quite similar to what is observed in two dimensions. That provides con-
fidence for extending the arguments we are about to develop to three-dimensional
piles.

Lastly—and this is crucial for the model discussed next—we can see that a
large-size intruder, such as in Figures 100(a) and (c), does not necessarily have to
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FIGURE 100. Different configurations of a two-dimensional inhomogeneous stack. Dia-
grams (a) and (b) are computer-generated structures, while (¢) and (d) are photographs of
actual real-life stacks. Note that a large intruder can be in a stable position without having
to be in contact with particles immediately below (arch effect) (after [93]).

rest on lattice lines associated with the matrix. Instead, they can be propped up
above such lines by lateral particles, somewhat like the arch of a cathedral rests on
stones that transmit its weight to side columns. Pursuing this metaphor, we refer
to this phenomenon as the arch effect or vault effect.

When trying to model the dynamic properties of such a system, we need to
inventory all possible stable positions of the intruder. Stability occurs under one
of two conditions:

o The intruder rests on a lattice line defined by the ordered arrangement of
spheres constituting the environment.

o The intruder is kept above a lattice line because it sticks at two points marked
by arrows in Figure 101. The line formed by joining these two points traverses
the intruder below its center of gravity. Should that process fail, the intruder
drops back down to the next lowest lattice line.

Modeling this situation involves solving a topological problem, which goes some-
thing as follows: The intruder is raised a very small step at a time, as depicted
in Figure 102, and the system is left to reorganize itself by relaxing around the
intruder. The new arrangement is examined to determine if it is stable or unsta-
ble. If it is unstable, the intruder is raised some more by a tiny amount, and the
stability is examined again. The process makes it possible to find eventually all
stable configurations.
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FIGURE 101. Simulation of the equilibrium of an intruder by the arch effect. On the left
is a photograph of an actual stack of metal spheres containing a foreign disk (after [93]).

Two-Dimensional Model

The relevant geometry is illustrated in Figure 103(a). Let ® = R/r be the ratio
(> 1) of the radii of the particles. As indicated earlier, the effective part of the pile
is confined within walls B;(T') and B,(T'), which in the present case intersect at an
angle of 60°. Our purpose is to determine all stable positions of the intruder as it is
being raised in a step-by-step fashion up the pile. The first thing we notice is that,
because of the geometry of the structure, we do not have to explore a height greater
than one period of the structure, which is given by ® = 2r+/3, or 3.46 times the
radius of the dominant particles. Let 4 be the altitude of the intruder’s center, as
shown in Figure 103(a). We keep track of each particle by its row (index i) and
column (index j). Simple geometry considerations show that the stable positions

FIGURE 102. Method for seeking the equilibrium positions in a stack by exploring different
possible configurations.
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FIGURE 103. Diagrams of two- and three-dimensional stacks used to develop a model of
segregation by the arch effect.

of the intruder, i.e., when it rests on a lattice line, are obtained when

hy =R+ r) —r2j — k17 +2r (1 + z?> ,

where the superscript S indicates that the position is stable. The index k runs
from [(—1)'*! + 1]/2 to Int((i +1)/2), the operator Int(m) designating the nearest
truncated integer of the argument m.

Next we look for stable positions of the intruder via vault effects, that is to say,
when it rests on two particles located below its center of gravity. We start from
a situation where the intruder is in contact with the two lateral walls B;(T) and
B,(T), which occurs when 4! =2r. When the intruder is raised gradually, it will
find a new stable position when two small particles can just squeeze below its
center of gravity. This happens when A"2 = (R +8)v/3 =~ r/3(® + 2), where §
is the space between the intruder and the lateral walls.” The fraction S of stable
vault configurations over a period © is given by

R —n"' 2-.43
®  2/3

A smooth rise through a continuum of vault configurations is obtained when § = 1,
which happens when ®Z2” ~212.9. As such, the quantity ®2? can be construed as
a critical ratio of diameters marking the boundary between two types of behavior
[92], [93]. On one side of the dividing line, the intruder rises continuously, while
on the other it goes through a series of discrete steps determined by the size of the
smaller particles. This line of reasoning makes it possible to calculate analytically,

S=1 ® ~ 0.077 d.

"In this approximation, we assume § & 2r. The exact solution would require lining the boundary with
small particles. The walls would then no longer be straight but made of a succession of connected
half-circles. The approximation is justified a posteriori by numerical simulations.
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FIGURE 104. Ascension diagram of an intruder of radius ®r in a matrix of particles of
radius r. The thick solid lines indicate the stable positions of the intruder as it rises via
the arch effect. The horizontal plateaus (fine solid lines) correspond to a discrete series of
positions in which the intruder rests on a lattice line of the matrix. The quantity 84 denotes
the small relative displacements of the intruder and the surrounding lattice.

or by means of simulations which will be discussed in Chapter 6, diagrams showing
the intruder’s stable positions plotted against its displacements. Figure 104 is an
example of such a plot.

Three-Dimensional Model

It is relatively straightforward to extend the preceding model to the case of three
dimensions. The triangle (7") becomes a tetrahedron which obeys the same sym-
metry. Using the notation indicated in Figure 103(b), we have
oy Rer _Rir
sin W tan W’

where h = 3R, h' = 3r, ¥ = cos™!(3), and ¥’ = tan~!(v/2/2).

The critical diameter for continuous rise via vault effects in three dimensions is
given by

p_ 3+V2
c 3—«/5

which turns out to be remarkably close to values found by numerical simulations,
which will be covered in Chapter 6 [91].

~2.78,

5.2.2. Experiments on Segregation by Vibration

The first quantitative experiments aimed at studying the phenomenon of segre-
gation by size were begun only in the late 1970s. For lack of a better technique,
the experimental approach consisted simply in measuring the time taken by an
intruder placed at the bottom of a container filled with a granular material to make
its way back up to the surface when subjected to vibrations [94]. This method was
much too primitive to reveal the subtleties of granular segregation which we are
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FIGURE 105. Diagram of experimental methods used to study the segregation by shaking
of a large particle in either (a) two-dimensions or (b) three-dimensions, In (a), a large
marked intruder is immersed in a population that includes a few tracers (black particles).
whose progression is tracked by image processing technigues. In (b), the movement of
tracer particles in their environment is monitored by direct visual observation.

Modern techniques take advantage of the possibilities offered by image pro-
cessing (see Section 3.2.3), as well as nuclear magnetic resonance, which makes it
possible to monitor what goes on inside a three-dimensional opaque system. More
direct methods rely on suitably prepared samples containing tracer particles. The
technique, schematically illustrated in Figure 105, has been used to study both
two- and three-dimensional configurations [93], [95].

A typical implementation of the approach is shown in the photograph of Fig-
ure 106. The apparatus uses two small cameras. The first, placed next to a vibrating

Tracking video camera

Vibration source

Camera monitoring
the vibration
amplitude

Horizontal translation stage

FIGURE 106. Photograph of an experimental setup designed to track the ascending move-
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(a) (b)

FIGURE 107. Experimental observations of the movement of an intruder. Diagram (a)
corresponds to a continuous rise (¥ = 16 and I' = 1.2), whilé (b) reveals successive
plateaus (¢ = 2 and I" = 1.4). The doted white line in (a) is an artifact due to the image
processing technique. It is quite real, on the other hand, in (b), which was generated by
directly displaying the height of the moving object as a function of time. The horizontal
scale corresponds to about 1 hour (after [93]).

plate, measures accurately the amplitude of the vibration. The second is mounted
on a translation stage and connected to the image processing electronics. With
thresholding and the image addition techniques described in Section 3.2.3, it is
possible to track one or more particles during the course of an experiment.® Alter-
natively, by moving the camera horizontally at constant speed, the vertical position
h(z) of the intruder can be displayed directly on the monitor’s screen as a function
of time. We will see several examples of this technique below.

Experiments on Continuous and Intermittent Ascent

An apparatus similar to the one just described has been used to study the different
modes of ascent of cylindrical disks of various sizes immersed in a uniform granular
medium. Experiments show that a small intruder “sees” the discontinuities of
the granular environment, which is to be expected. A large disk, on the other
hand, rises smoothly without any pauses, which is not at all intuitive. Disks of
intermediate sizes exhibit continuous rises interspersed by plateaus, in agreement
with the predictions of the ascent diagram.

The model does seem to predict fairly well whether an intruder will ascend cont-
inuously (Figure 107(a)) or intermittently (Figure 107(b)). On-the other hand, it
tells us nothing about what causes the ascent in the first place. A careful observation
of the vibrated container offers some hints as to what drives the intruder toward
the top.

With the aid of a suitable stroboscopic lighting system, it is easy to observe
fractures with various lifetimes appearing in the immediate vicinity of the intruder,
as shown in Figure 108. )

8“Thresholding” consists in defining a particular level of brightness. Anything brighter than that level
is considered white (or 1), and anything darker becomes black (or 0).
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FIGURE 108. Photograph showing the relatively random appearance of fractures around
the intruder (after [93]).

Referring to the ascent diagram of Figure 104, we can make the following obser-
vations:

o A small intruder (one that is characterized by ® < 12.9) requires a large rel-
ative displacement 8§ between itself and its environment in order to overcome
each step in the ascent diagram. Accordingly, we may anticipate a sizable vi-
bration threshold to initiate this kind of motion. Experiments indeed confirm
this.

e A large intruder (one with ® > 12.9) proceeds much more readily while re-
maining continuously in an arch configuration. We can predict—and it is
experimentally verified—that the amplitude threshold is much lower than in
the previous case. In other words, a larger intruder moves up far more easily
than a small one.

As we will see, this is further confirmed by diagrams of upward speed as a function
of the ratio ® = R/r, at least on condition that we avoid the convection regime.
In this respect, experiments that make it possible to observe simultaneously the
upward drift of the intruder and the relative motions of the surrounding particles
are highly revealing.

Finally, we might point out that the phenomena of continuous and discontinu-
ous ascent just discussed have never been observed up to now in three dimensions,
even though simulations predict them. That does not necessarily mean that they
do not exist.

Convection or Arch Effect?

Experiments conducted in two or three dimensions show that, when the vibration
is sufficiently intense, particles experience a phenomenon of convection similar
to what we have already encountered in Chapter 3. We proceed to provide ad-
ditional details pertinent to these two situations. We start with three-dimensional
configurations.
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FIGURE 109. Schematic description of three-dimensional experiments on the segregation
of a single intruder. Diagram (a) shows the initial configuration. In (b), the intruder has
begun its ascent, while some small black tracers have started to move down along the lateral
walls. Diagram (c) depicts the situation some time later, when convection recirculates the
black particles dragged to the bottom along the sides, while a central convective flow pushes
the intruder toward the top (after [95]).

Convection and Segregation in Three Dimensions

A series of experiments, conducted in a cylindrical container with and without
an intruder (see Figure 54), demonstrated convincingly the existence of convec-
tion movements in a column of granular material subjected to energetic impulses
separated by periods of the order of a second, so as to let the system relax back
between successive excitations [95]. Figure 109 illustrates schematically the kinds
of phenomena that are typically observed in such an experiment in the presence
of an intruder.

The results shown in Figure 110 demonstrate that, regardless of the size of the
intruder, its upward movement proceeds at the same speed as that of the convective
flux of the matrix. For purely geometrical reasons, large intruders cannot return
back down alongside the walls the way the main population of particles does.
We may conclude that we are dealing here with segregation by pure convection.
Segregation by convection takes place both in two- and three-dimensional config-
urations. It is very important to remember that when convection drives the process,
the ascendmg speed does not depend on the size of the 1ntruder in marked contrast
with the arch effect mechanism.”~ N

Convection and Segregation in Two Dimensions
‘We now report the results of experiments conducted in two-dimensional cells of

the type described earlier [97]. Figure 111 shows CPP photographs of a

Some degree of caution is warranted in making this statement. It has not actually been proven that
the intruder itself does not somehow induce convection. The dynamic maps presented in Figure 111
would suggest that such is not the case and that the intruder does not nromote convection at least not
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FIGURE 110. Successive positions of different intruders plotted against the number of
impulsions applied to the container. The ratio ® is equal to 9.5 (crosses), 6 (circles), and
1 (squares), respectively. Note that large intruders remain trapped at the surface after com-
pleting their climb, while small ones (square data points) are dragged back down to the
bottom by convection (after [95]).

two-dimensional pile vibrated vertically with varying accelerations. Figure 111(a)
reveals a process of convection identical to the one just discussed in three dimen-
sions. By contrast, Figure 111(b) is indicative of an arch effect squeezing the in-
truder. As emphasized above, this phenomenon depends on the intruder’s size. The
velocity of the upward movement is presumably a function of the diameter ratio ®.
This was entirely confirmed by a set of experiments recording the altitude 2 (¢) of
intruders of various sizes as a function of time for a given acceleration and container
configuration. The results of these experiments are reproduced in Figure 112.

convection

arches

(b)

FIGURE 111. Diagram (a) shows a typical segregation mechanism by convection observed
with a relatively strong excitation (I" = 1.6). Diagram (b) was obtained with a weaker
acceleration (I" = 1.2). It reveals an arch effect mechanism that displaces markers laterally
below the intruder. This latter mode of segregation acts differently on intruders of different
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FIGURE 112. Positions A(t) of intruders of various sizes immersed in a bath of particles
1.5 mm in diameter. The larger the size of the intruder, the faster its ascent (after [93]).

Here the acceleration was held constant at I' = 1.25. The various curves A (t)
have been displaced along the horizontal axis to make it easier to tell them apart.
The results clearly demonstrate a process of size segregation consistent with the
arch effect model discussed earlier. Small-size intruders (® < 12.9) experience a
discontinuous ascending motion marked by a series of steps and plateaus. The
greater the size of the intruder, the less discontinuous its upward movement, in
agreement with the model. All of this is consistent with the ascent diagram shown
in Figure 104. Furthermore, with small enough intruders (characterized by ¢ < 3),
no ascending movement occurs at all, at least not for this particular acceleration
and over the duration of the experiment (about 1 hour). The results, summarized
in Figure 113, prove that there is indeed a threshold diameter below which any
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FIGURE 113. Ascending velocity measured from Figure 112 as a function of the diameter
ratio & (after [93]).
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ascending motion is inhibited. The existence of the threshold diameter makes sense
on the basis of the ascent diagram in Figure 104, We noted at the time that, for
weak accelerations, the fluctuations 84 of the intruder’s positions can be smaller
than what is required to bridge the quantum jumps between successive steps. This
is consistent with the nonlinear behavior observed in Figure 113.

Finally, the size dependence of the ascending velocity of intruders may find use-
ful industrial applications, since it provides a means to separate particles immersed
in a granular medium. We can envision the possibility of “filtering out” components
of different sizes by a proper choice of the acceleration im parted to the cell,

5.3. Segregation by Shearing

As already mentioned, segregation by shearing, which comes about when two
sheets of granular material slide past each other at different velocities, turns out to
be surprisingly effective. The universal character of this phenomenon, involved in
situations as diverse as geophysical processes such as landslides, mixin g drums,
and channeling through chutes, has prompted numerous recent investigations in
two-dimensional configurations [98], [99]. Here again, we will restrict ourselves
to the physics of the segregation of objects of different sizes, which is still in its in-
fancy, as many seemingly simple phenomena remain unexplained. Segregation by
shape, density, or micromechanical properties has not yet been studied thoroughly
enough to warrant discussion in this chapter. We will begin with the behavior of a
single intruder immersed in a uniform environment. This will be followed by an
analysis of segregation in a mixture of two granulars of different sizes.

5.3.1. A Single Particle in a Uniform Medium

As pointed out in Chapter 4, a rotating drum is a convenient tool to study the flow
properties of sheets of granular materials, and we will once again resort to this
familiar device depicted in Figure 114 [98], [99].'° This cylindrical drum with a
horizontal axis is similar to the one that served us so well in Chapter 4 for studying
avalanches. To take advantage of the image processing techniques described in
Section 3.2.3, we want to select objects with a high visual contrast. For instance,
we may use a matrix of white spheres and a single, black tracer particle, whose
movements we wish to track. We learned in Chapter 4 that when the drum is rotated
slowly about its axis, a series of more or less periodic avalanches of different sizes
is set off. The avalanches are confined to a narrow layer near the free surface of
the material, which constitutes what might be called a liquid phase. The rest of the
structure is in a compacted state that can be thought of as a solid phase. The solid

OFigure 114 is a drawing, not a photograph taken during an actual ex periment. The distinction is
significant, inasmuch as it is not obvious that the configuration depicted here can truly oceur in a
real rotating drum. This particular structure was arranged so as to ensure the local equilibrium of
every disk during the stacking process. There is a fundamental difference between that and the global
stability of the entire edifice. An avalanche boils down to disrupting the local stability, which in turn
alfects the global stability of a granular pile.



172 5. Mixing and Segregation
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FIGURE 114. Typical experimental arrangement used to study segregation by shearing.
We track the path of a tracer particle placed in a uniform matrix.

portion of the pile remains effectively bound to the cylinder. As. the.tr..acer -partlcle
is being dragged along by an avalanche to the bottom of the pile, 1t. is re}nserted
and buried into the solid phase. The rotation of the drum then causes it to rise back
up toward the free surface. .

It is important to have a clear picture of the sequence of events. The evolution
of the intruder is illustrated in Figure 115, which shows the outcome of a real
experiment. The experiment reveals that the process qf segregation toward the
center or edges of the drum occurs in the flowing region at the surface f)f 'the
pile. Based on what we know about avalanches, particularly about their statistical
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FIGURE 115. Velocity diagram of a tracer particle dragged in the liquid phase and rein-
serted in the solid phase. In the present case, R < r. The intruder is seen to converge toward

the center (after [90]).
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properties that we discussed in Chapter 4, we might expect that the reinsertion
points should be randomly distributed at the surface. If $0, a drum should be a very
efficient mixer. As it turns out, this assumption is quite wrong, and we shall see
shortly what experiments can tell us about why that is.!!

From a practical standpoint, the question of segregation by shearing can be
couched in the following terms: Given a tracer particle of radius R immersed in a
bath of identical particles of radius r, what is the best experiment to do to find out
what causes the tracer particle to either wander over the entire space available or,
as the case may be, confine itself to a restricted portion of space, when the radii R
and r are varied?

Once again, the answer to the question is provided by image processing tech-
niques [99]. By tracking a marked intruder, it is possible to determine the rate of
occupancy throughout the half-circle filled by the granular material in the drum.
The measurement requires recording on the same image not only the various po-
sitions p; of the marker, but also an indicator of how often each position p; is
occupied. This is done by assigning gray levels in such a way that the more often a
site is visited, the darker the corresponding pixel appears. The technique involves
the following series of steps:

(1) Animage is recorded at time 7,. With suitable thresholding, the intruder is
picked out and all other particles are discarded. This produces a map with
a single black pixel.

(2) The brightness of the picture is then divided into 256, and the result is stored
in a buffer (a block of memory in electronics parlance).

(3) A new image is recorded at a later time z,. Its brightness is also divided into
256. This second image is added to the first one in the buffer. At this point,
the buffer will contain either one pixel with a brightness of 2/256 if the
intruder has not moved, or two separate pixels with a brightness of 1/256
if it has moved, in a sea of pixels with zero brightness corresponding to all
the other sites that have yet to be visited.

(4) The cycle is then repeated from the top, for a total of up to 256 times.

The lower part of Figure 116 shows the results of this type of exercise. The data is
analyzed by slicing time in discrete frames, denoted by an index i, during which
one or more avalanches may occur. If the intruder is inserted in the flowing sheet at
the radial coordinate r; at time #;, what will its coordinate riy+1 be in the very next
frame attime ;| ? The corresponding correlation diagram r; 1 = f(r;), referred to
as the map of first iteration, is shown in the upper part of Figure 116. The diagram
is drawn for a region encompassing a 40°-wide sector S, bounded on the short side
by aradius R, corresponding to the exclusion zone of the particles in flow, and on
the long side by the inner radius R, of the rotating cylinder.

This is an important observation. It means that segregation by shearing does not result merely from
reinsertion of an intruder during successive avalanches. A more plausible picture is for the intruder
to undergo segregation by size during an avalanche and be transported across a distance that is
determined by its relative size.
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R/r=2/3 Rir=1 Rir=4/3

FIGURE 116. The bottom part of this figure is the superposition of 12,000 snapshots taken
every 5 seconds. It shows the spatial distribution of the sites visited by particles. whose
diameter is (a) 1 mm, (b) 1.5 mm, and (c) 2 mm, placed in a bath of particles of d%ameter
1.5 mm. The upper part of the figure is discussed in the text. The cylinder had a diameter
of 160 mm, and its rotation speed was typically 2 degrees/s (after [99]).

The results show that, depending on the size of the intruder relative to the
majority particles, it tends to converge toward the center, to explore al_l th.e available
space, or to take refuge near the periphery. A uniformly gray area indicates near
perfect mixing. . '

We note first that the correlation diagrams r; 1 = f (r;) are all symmetrical with
respect to the principal diagonal. This observation is not insignificant. It means that
a true steady state is reached as early as the first iteration. If that were not the case,
we would see over the course of measurements a flight of the intruder either toward
large radii or toward small ones. That would translate into an accur'nulat.ion of data
points either above or below the principal diagonal in the correlation diagrams. It
also means that the steady state can be described in terms of a relation of the type

[Gini/r) _ Pri)
[T/ rign) P(r)’
where P(r) is the probability of finding the intruder in region S, and [](ri+1/r:)

is the conditional probability of finding the particle at r;;; when it is at r; during
the preceding frame. These results can be normalized by writing

Ry
P(r) = / [Je/ePeydr
Ry

and

Ry
/ P(r)dr = 1.
R

N
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FIGURE 117. Probability of presence P(r) inregion S (sec text). The triangles, squares, and
parallelograms correspond to particles of diameter 1, 1.5, and 2 mm in diameter, respectively.
They are immersed in a bath of particles whose diameter is 1.5 mm. The inset shows the
dependence of the parameter & (the inverse of the localization length) on the diameter ratio
& (after [99]).

The experimental results have been averaged over a distance Ar equal to three
particle diameters.

Figure 116 shows convincingly that the region of space covered by the intruder
depends on whether its diameter is larger or smaller than that of the majority
particles. The same information is conveyed by a graph displaying the probability
P(r), as shown in Figure 117. To a first approximation, the probability P(r) can
be described by a function of the type P(r) o exp(ar), where « represents the
inverse of a length characteristic of the segregation process. Evidently, e changes
sign when the ratio ® goes through unity. A positive sign indicates that the intruder
flees toward the periphery, a negative sign that it tends to converge toward the center.

Without pursuing the analysis of experimental results any further, we may note
that our avalanche model discussed in Chapter 4 is not completely accurate. In
particular, we had claimed that an avalanche, being of random size, should reinsert
a particle anywhere along a flowing sheet. Actually, as revealed by the maps of
first iteration or by tracking an individual marked particle of congruent size, both
the center and the periphery of the cylinder are attractors for the dynamics of
the system. If a particle is introduced near the periphery of the cylinder, it will
tend to stay there. Likewise, a particle introduced near the center will tend not to
wander off vary far. This implies a degree of correlation between trapping events
taking place within avalanches, somewhat consistent with the model developed in
Section 4.2.2. We might conclude that the dynamics of size segregation is governed
by two attractors, one at the center, and the other on the periphery of the cylinder.
According to this hypothesis, segregation in a rotating cylinder could be construed
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FIGURE 118. Schematic diagram of the segregation process of a two-dimensional granular
mixture. The black particles are smaller than the white ones. They begin to collect near the
center of the drum after just one revolution.

as a mechanism favoring one attractor over the other. Such situations often involve
the phenomenon of bistability.'?

5.3.2. Segregation of Two Populations of Particles
of Different Size

We now consider a mixture of two distinct populations of particles. The first ques-
tion that comes to mind is whether the observations just made in the case of a single
intruder in a sea of identical particles can be extrapolated to predict the behavior
of our mixture of two materials. In other words, can the process of separation in a
binary mixture be treated as a succession of independent steps affecting individual
particles, such as we were dealing with in the preceding section? The answer is
not at all obvious, as we are about to find out. We will show that the kinetics and
geometry of the segregation process depends on the shape of an incipient cluster
growing with a fractal structure.

We now define the problem more rigorously. Let N4 be the number of particles
of diameter d4, which is to be mixed with, or segregated from, a number Np
of particles of diameter dg. As usual, we define a ratio @ = da/dg. The entire
system is placed in a two-dimensional rotating cylinder of the type used earlier,
which amounts to a simplified two-dimensional version of Oyama’s drum. The
experiment starts by mixing particles A as completely and randomly as possible
with particles B. These may be, for instance, black disks mixed in with slightly
larger white disks, as depicted in Figure 118.

The experiment reveals that after just a few turns of the cylinder, the smaller
particles have gathered in the central part of the drum. The connected mass cre-
ated this way is called the reference mass.'> Its surface area, reached in principle

12 A bistable system has two equilibrium states. It can switch from one to the other under the effect of
some external perturbation.

13 A mass is said to be “connected” when its particles actually touch each other.
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after an infinite time—in reality, this time is quite short, as we will sec—is de-
noted S,..

We proceed to highlight a few general ideas relevant to this situation. A more
de.taﬂed a.malysis can be found in [90]. In order to characterize the state of the
mixture, it is useful to introduce a parameter describing its degree of order. Let
S(1) be the surface area of type- A disks absorbed in the reference mass at time; t. It

is clear that S(¢) has to be smaller than S.... The de ion i i
. gree of segregat
by a parameter a(z) defined as ” sresationts quantified

a(t) = é‘ﬂ
X0
At this point, it is natural to introduce an ordering parameter P, (¢) that can vary
between O (for a completely random and homogenous mixture) and 1 (for a fully
developed reference mass). This parameter is defined in terms of a(t) by

_ a(t) — a(0)

Il —a(0) ~
Py(t) can f':asily. be dete.:rmined by means of imaging processing techniques of the
type described in Section 3.2.3. The results presented in Figure 119 shed some

light on the kinetics of the process of segregation,
The graph reveals two important findings:

Po ()

e The growth of the ordering parameter is surprisingly fast. With a rotation
velocity as low as 1.3 rpm, the reference mass is virtually fully developed
a.fter only about 100 s, which corresponds roughly to two full turns. The
time constant ¢ in Figure 119 is of the order of 0.7 revolution. These results
underscore the remarkable efficiency of segregation by shearing.
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F.IGURE 119. Order paramet.er Fo(r) plotted against time for a mixture of disks with
dlamleters of 6 and 10 mm. Thirty percent of the surface is occupied by the smaller disks.
The inset shows the dependence of [1 — P,(¢)] on time (after ref. [90T)
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e The ordering parameter grows exponentially. The inset in Figure 119 shows
that it evolves as Po(t) oc 1 — exp(—t/T), which describes a kinetic process
of first order. This remarkably simple behavior remains totally unexplained.

When studying mixtures of different concentrations of particles A and B ,.the
conclusion is that the time constant 7 is practically independent of the composition.
As of yet, this too is unexplained.

Segregation Speed and Particle Size

The ratio of the diameters of the two types of particles should play an important
role in how fast the central mass forms. Indeed, we know the result in two extreme

cases:

e When the ratio @ is quite small (typically less than 0.2), which happens when
one type of particle is very much smaller than the other, a phenotpenon known
as sifting takes place. It describes the ability of the smaller pa.rtlc.les t(.) snake
their way through the interstices between the larger ones. This s1tuat10n. can
be modeled using the concepts of directed percolation. The small partlc'les
then remain trapped at the interface between the liquid and solid phases which
defines the flowing sheet. Since the medium in which the small particles evolve
is defined by the gaps between the large ones and is, therefore, independeqt of
their own size, the ratio ® should have no effect on the velocity of segregation.
Under these circumstances, the time constant T must be independent of ®.

o If the ratio @ is such that ® = 1, which amounts to dealing with a single
type of particle, the arguments developed in Section 5.3.1 apply. In particular,
we established that all particles roam through the entire space avallable.. By
marking some of the particles, it was subsequently established that par'ucles
actually tend to remain in the vicinity of the attractor nearest th§ point of
insertion. If so, it is, of course, impossible to cling to the definition of the
parameter t. It must diverge to infinity since, from a macroscopic point of
view, P, is required to remain constant in this case.

Numerous experiments have shown that between these two extremes, the tin-le
constant T varies approximately linearly with the ratio ®. If 7 is expressed in
numbers of rotations, then we have the simple linear relation

TR 1.2 with @ € [0.2,0.8].

This expression does indeed give 7 ~ 0.7 when ® = 0.6. . . .
We conclude this section, devoted to segregation by shearing, with a discussion

of the surprising—and so far unexplained—dependence of the time constant on

the rotation velocity of the drum which, up to this point, has been held constant at

1.3 rpm.

Segregation Speed and Rotation Velocity

First off, we note that a rotation speed of 1.3 rpm, chosen for the experiments
described above, causes a continuous flow along the tilted surface in the drum.
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This is entirely consistent with the results reported in Section 4.1, namely, that
the flow switches from discontinuous to continuous at around 0.3 rpm. Second,
the speed of 1.3 rpm is well below the 12 rpm needed for the onset of inertial
effects.

Both the previous experiments and the present one were done with 600 small
disks 6 mm in diameter, and 720 large disks 10 mm in diameter, giving area ratios
of 25% and 75%, respectively. Two surprising results emerged. First, the time
constant remained unchanged at 25s as the rotation velocity varied from 1.3 to
8 rpm. Second, at velocities higher than 8 rpm, segregation disappeared altogether
and the mixture remained substantially homogeneous, even over periods of several
hours,

These results are completely unexpected and, for the time being, without ex-
planation. We would normally anticipate that the process of segregation should
become more efficient as the small disks pass more frequently through the portion
of granular material flowing down the slope. In fact, nothing of the sort happens.
Quite on the contrary, segregation proceeds at the same pace even though the
number of crossings through the liquid phase varies by more than a factor of 6.
Furthermore, since segregation was shown to behave as a kinetic process of first
order, we would expect it to depend monotonically on rotation speed, rather than
to suddenly drop to zero at 8 rpm.

Perhaps a plausible interpretation can be proposed if we £o back to the principles
we invoked to explain the role of arch effects in the phenomenon of segregation
by vibration. We argued that a granular system must have enough time to relax
between excitations in order to adapt to the intruder’s geometry. Only then can the
intruder migrate efficiently. In other words, segregation is sensitive to the size and
geometry of the objects involved and requires a finite amount of time to manifest
itself. When viewed in that light, the results described above may not be so puzzling
after all. As the rotation velocity increases, the granular surface flow becomes too
fast and chaotic, leaving too little time to adjust to the geometry of the particles.
We may even push the argument a step further and envision that the flowing
sheet, which is liquid-like at low speed, gradually turns into a gas as the number
of collisions between particles increases with speed. This hypothetical “phase
change” between liquid and gas may occur rather abruptly and could very well
explain why segregation suddenly disappears above a certain rotation velocity (in
the present case, at 8 rpm). Between 1.3 and 8 rpm—the regime where segregation
proceeds efficiently—the experimental results show that = increases linearly with
rotation velocity (provided that t be expressed in number of revolutions).

Fractal Growth of the Central Cluster

As we noted earlier, the central cluster made of the smaller particles is practically
formed in a very short time corresponding to two revolutions of the cylinder, orjust
three times the time constant . Having determined that, for all practical purposes,
the formation of this cluster is governed by a first-order law, as are many other
growth processes, we set out to try to understand the phenomenon on the basis of
geometrical considerations.



180 5. Mixing and Segregation

Boundary line

(b)

FIGURE 120. Diagram (a) shows particle clustering after the drum, filled as indicated in the
text, has rotated for 300 s. Diagram (b) shows a portion of the boundary of the accumulated
cluster.

There exists a prolific literature on the subject of materials synthesis by a va-
riety of growth mechanisms, including thin-layer deposition, Diffusion-Limited-
Aggregation (or DLA, for short), [100]-directed percolation, and several others.
Quite often, these various growth mechanisms lead to self-similar geometrical
forms, that is to say, structures with fractal properties.

Defining the segregated cluster as that delineated by the greatest possible number
of connected points, we designate by M (r) the length of the jagged line that forms
its boundary. The objective is to calculate this length as a function of the radius r
of a circle centered on a particular point of the line, as shown in Figure 120. Let
M (r,) be the length obtained when the radius r of the circle matches the radius r;
of the small disks composing the segregated mass. We can then generate diagrams
of the quantity log[M (r)/M ()] plotted against log(r/r,). The result is shown
in Figure 121. The graph reveals that the boundary of the segregated cluster has
a fractal structure with a dimension d = 1.62 £ 0.2, which allows us to write the
functional dependence M (r) o< r¢.

As it happens, numerical simulations have also been done, although in a some-
what different context [100]. Based on a model of directed and uncorrelated growth
of a two-dimensional structure, they gave an exponent of 1.76, not too different
from the result reported above. It can be shown, incidentally, that the exponent
should decrease when finite-size effects are present, which is most certainly the
case for our segregated cluster. To be sure, these considerations are only semi-
quantitative. Although they have great pedagogical value, the results described
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FIGURE 121. Normalized length M plotted against the radius r of the measurement circle.

here hz'we yet to be confirmed by more careful experimental work and further
theoretical analysis.!4

5.4. Segregation in Oyama’s Three-Dimensional Drum

As noteld at the beginning of this chapter, the experiment reported in 1939 by
anma involves a phenomenon that remains without explanation [89]. A schematic
dl::tgram of the experiment is reproduced for convenience in Fi gure 122, The reader
wjlli reca]].thal an initially homogeneous mixture of two kinds of particles with
different sizes gets segregated in vertically separate regions as the drum rotates.
The physics of this phenomenon has so far defied analysis.

We will first describe a few experimental observations reported in the literature
[90], [101]. We will then sketch the broad outlines of a model recently proposed
by S. Savage [102]. .

5.4.1.  Experimental Observations

The experiments described here are done by filling one-third of the volume of a
g]flss cylinder 70 ¢cm long and 10 ¢m in diameter, whose internal wall is lined
with roughened spheres. The mixture introduced into the cylinder is composed
of 50% of colored spheres 1 mm in diameter, and 50% of spheres of a different
color and 3 mm in diameter. The cylinder is then rotated around its horizontal

14 T T 3 ;
De ‘G(,nnc:-_ has rcccnlly'cic\'elupcd a model for segregation via avalanches [43]. The model is based
:]n} rd set of coupled variables discussed in Section 4.2,3, Although it deals with a situation that is
ifferent from a rotating drum, it leads to power laws with fractional exponents which may well have
a bearing on the experiments described here.
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Wavelength A

FIGURE 122. Three-dimensional segregation in Oyama’s drum. An initially homogenous
mixture of two different types of particles undergoes segregation in a number of bands
perpendicular to the axis of rotation.

axis at speeds ranging from 15 to 65 rpm. After 10 or 20 min, the mixture has
separated in bands characterized by a wavelength A, as depicted in Figure 122,
The most salient features of the experimental results can be summarized thus:
Between 15 and 65 rpm, there is little or no dependence of the wavelength on the
angular velocity. When the rotation speed drops below 15 rpm, segregation ceases
altogether, and the smallest bands tend to be the first ones to vanish.

Several authors have reported that the steady state, reached after long periods,
consists of three bands.

5.4.2. Savage’s Model

S. Savage has proposed a phenomenological model based on an observation we
skimmed over briefly in Section 4.1. It refers to a phenomenon that is observed
fairly frequently but is poorly understood [103], [104]. Specifically, when the drum
is rotated at a speed sufficient to generate a continuous flow, the tilt angle of the
surface sheet with respect to the horizontal depends on the size of the particles.
Whether this reflects a kinetic drag phenomenon or, as is more likely, a finite-
size effect typical in this type of experiment, the fact the kinetic angle changes
according to the type of particles will induce a lateral flux (i.e., parallel to the x-axis
in Figure 122), which will depend on the ratio of the particle diameters as well
as on the rotation speed.!> With this observation in mind, we consider a mixture
of two populations of spheres A and B. Let 6,4 and 0 be their respective kinetic
angle at a given rotation speed. We denote by C4(x) the local concentration of
species A at a point of abscissa x. We expect the kinetic angle #(x) of a mixture of
particles to be a weighted average of the kinetic angles of each individual species.

13Curiously, the dependence of the kinetic angle on particle size has apparently never been observed
in two-dimensional geometries, perhaps because the total number of particles is then too limited.
Expanding on an idea advanced in Section 4.1 in connection with avalanches of various sizes, we
may surmise that the aspect ratio manifests itself only when the number of particles is large enough,
regardless of dimensionality.
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This we write

0(x) =65 + AOC4(x)
with

A =04 — 0.

Focusing our attention on type-B particles, their flux will result from two com-
Pe[ipg effects. On the one hand, there is a flux ® Bx(A0) due to the difference
in kmt::lic angles, which tends to drive particles along the direction of the x-axis
(see Figure 122). On the other, there is an opposing flux @z, due to diffusion and
described by Fick’s law involving a diffusion coefficient D. The total flux ® By Of
B-type particles along the x-axis is then given by

Tq summarize, the horizontal flux is created by differences in the kinetic angle, but
1t 1s opposed by a diffusive component that tends to equalize the concentrations.
The formation of bands would result from competition between the two effects.
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Numerical Simulations

6.1. Introduction

Numerical simulations aimed at modeling various aspects of th§ physics of gran-
ular materials, which we have touched upon throughout the f.:arher.chapters, have
a twofold objective.' On the one hand, there are pressing incentives tq sglve a
number of practical problems related to the treatment of granular matter in indus-
try. Whether the issue is pesky segregation, blockages of flows by arch. effects,
or disruptive internal convection phenomena (see Chapter 1), the re.qu1rem.ents
of the industrial sector are many and, needless to say, alrpost always immediate.
The urgency of industry’s needs and the increasingly rapid developments of cre-
ative numerical simulation techniques have prompted many r.es.earchers to d.evote
a great deal of effort to devising algorithms suitable for describing the behavior of
granular materials.? . .

On the other hand, numerical simulations are of cons1dera.b.le interest from a
more fundamental point view as well. They offer the possiblhty to.explorfa thg:
effect of many parameters which are simply not accesmble. to experlmentatlon..
In that sense, numerical simulation has truly become an integral part of basic

! An excellent introduction to the topic of numerical simulations of granular materials can be found in
{59].

2 At the present time, the number of researchers engaged in numerical simulations in th

is particular
domain of physics substantially exceeds those pursuing experimental work. *

3That is the case, notably, for the coefficients of elastic restitution & and the goefﬁcients of fpctllog
w, which can be varied at will on a computer, whereas nature offers the experimenter a very limite

range of choices.

6.1 Introduction 185

research. Indeed, it does not operate in a vacuum. Comparing experimental results
and numerical simulations constitutes the ultimate test to validate—or reject, as
the case may be—tentative models.

The goal of computer modeling is as ambitious as it is clear. Starting from the
properties of the elementary granules that make up the material of interest, and
incorporating whatever may be known about their mutual interactions, the objective
is to devise computational methods flexible and general enough to predict the actual
behavior of a real granular system in a variety of situations.

6.1.1.  The Challenges of Numerical Simulation

The comments we have just made could apply just as well to any other area of
the physical sciences. Yet, the case of granular materials is rather unique. We have
already hinted in Chapter 2 at the difficulties physicists face when trying to model
collisions and friction between solids. Modern numerical techniques can deal with
so-called n-body problems, even when n is quite large. That is no longer an obstacle.
The main challenge is to incorporate in the formulation of these problems the basic
micromechanical properties describing the relevant interactions, and to do so as
accurately as possible. Many decisions have to be made while setting up a model.
What is the duration ¢, of a collision between two particles? What is the penetration
distance (Section 2.2.2)? How should the proper time step be chosen in relation to
both the time interval between two successive events and the collision duration t,
(Sections 2.2.2 and 3.2.1)? What is the best way to model Coulomb’s laws of dry
friction (see Section 6.4)? Perhaps the toughest problem of all is how to account
correctly for the effect of microcontacts and their erosion over time, as mentioned
in Section 2.2.1. Is there a way to include phenomena of wear and tear and strain
hardening in the model? All these questions have to be answered before devising
a realistic simulation.

6.1.2.  The Different Simulation Methods

Given this lengthy list of problems inherent to granular materials, it is hardly
surprising that a great many different strategies have been proposed over the last
few years. As it turns out, each simulation method has its advantages and draw-
backs. Whether it be in terms of computational time or accuracy of results, no
approach developed to date can satisfy all requirements. Compromise is the rule,
as each method suffers from some degree of limitation. Under these circumstances,
choosing one over another requires a good deal of caution.

Coming up with a logical classification scheme of such diverse simulation tech-
niques is no easy task. It would be a bit presumptuous to attempt a comprehensive
review of everything we presently know on the issue of simulating granular matter.
Without exceeding the scope of this book, though, it is possible to extract from
simple observations a few general princi ples which we will build on in the remain-
der of this chapter. This approach will enable us to clarify a number of notions
which those doing simulation work routinelv relv on.
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Hard Spheres and Soft Spheres

The first idea that comes to mind to simplify the level of difficulty in modeling
solids in collision is to treat them as hard spheres. In the context of numericat
simulation, however, the word “hard” does not necessarily imply that the collisions
are perfectly elastic. It simply means that there is no interpenetration or deformation
during impact, which is considered infinitely brief. The loss of linear momentum
is characterized solely by means of the coefficient of elastic restitution, at least
when rotations are neglected. That was in fact the approach we used to model a
column of spheres in Section 3.2.1.

The hard-sphere approximation is at the basis of the so-called “collisional” or
“event-driven” (ED) models, as we will see later on. It is also the principle behind
various pile-synthezing methods, including dynamics of contacts (see Section 6.4),
Monte Carlo, and steepest descent.

In this approach, the mechanisms of restitution of elastic energy and friction are
treated as if they were completely decoupled. Dry friction is generally modeled in
terms of Coulomb’s laws as presented in Section 2.2.1.

The soft-sphere approximation is based on an entirely different principle. Here,
friction and elastic restitution come into play only when spheres penetrate into each
other, and the magnitude of the interaction depends on the penetration depth. The
prototypical algorithm in this category is the molecular dynamics (MD) model.
The essence of this approach revolves around the deformation of spheres. As such,
how long they remain in contact is of paramount importance.

Duration of Collisions and Chronology Problems

Predictably, the order in which the calculations are performed must be selected
with care. Two possibilities exist, each with its own advantages and disadvantages:

e The first option consists in sampling the system at regular intervals, using
a time step small enough to avoid “missing” an event, which could com-
pletely change the subsequent chain of events. However, as we have already
pointed out, the duration of contact between hard spheres is infinitesimally
short. Several collisions may occur in rapid succession and passibly set up
oscillations at a rate exceeding the sampling frequency, as suggested in Sec-
tion 3.2.1 and illustrated in Figure 123. Therefore, a sequential algorithm is
not a wise choice in the hard-sphere approximation. It would be more suitable
for a molecular dynamics model, where collisions have a finite duration.

e Researchers have devised an algorithm in which the timing of the sampling is
governed not by a fixed external clock, but by events themselves. This type of
event-driven approach guarantees that no event will be missed. On the down-
side, there is a risk of getting trapped in situations where a particular event,
such as an oscillation triggered by a collision, lasts for a very long time. It
then becomes necessary to rely on some test criterion to get around the trap.
‘We have already mentioned such a criterion in Section 3.2.1, known as LRV
(Largest Relative Velocity).
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FIGURE 123, Schematic illustration of the type of difficulties encountered in numet-

Zznl sm;ulations using either sequential algorithms (top) or event-driven algorithms
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Summarizing, ED-type algorithms are particularly well suited to describe hard
sph.eres, while MD algorithms, based as they are on soft spheres, are more com-
patlb.le with regularly spaced periodic sampling. The remainder of this chapter will
provide more details on these two techniques, which have become widely used.
Nf:xl, we will describe briefly some approaches based on the mechanical properties
of contacts between solids, coupled with specific convergence criteria. This latter
:approach has recently scored some remarkable successes in modeling the dynam-
ics of granular structures in a variety of situations. In connection with the Brazil nut
problem, we will describe the Monte Carlo technique, as well as the method known
as steepest descent. Finally, cellular automaton models have also been proposed
recently to simulate the dynamics of granular materials. They are close cousins of
.those used so successfully in solving certain hydrodynamics problems. This area
1s currently in rapid development, and it would be premature to cover it in great
depth.

Before embarking on an analysis of these various techniques, this is an ap-
prppnate opportunity to provide at least a partial answer to a question we have
raised on several occasions in the preceding chapters: How to make the transition
trom a discrete representation—which a numerical simulation is by essence—to a
“thermodynamical” description of a granular medium?

6.1.3.  The Transition from a Discrete to a Continuous Description

Wc have emphasized in Chapter 3 the difficulties faced by continuum descrip-
tions when applied to a real granular medium, which is inherently discontinuous.
Predictably, differential equations become increasingly inadequate as the number
of particles involved diminishes. This type of problem was particularly evident in
our analysis of granular avalanches in Chapter 4.
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Numerical simulations modeling a sequence of events such as collisions and
friction determine at any given instant the position x; and velocity u; of every
particle. On the other hand, we know that classical thermodynamic theory rests on
continuous and differentiable variables such as density p, collective drift velocity v,
and macroscopic temperature 7. The question is whether there exists a connection
between the two types of description. Given a complete knowledge of the positions
and velocities of all the particles (provided by a numerical simulation), is there a
way to define the thermodynamic quantities p, v, and 7?* Symbolically, we may
write

There are clearly several possible answers to this question, some more realistic
than others. The technique we describe next has the merit of being fairly intuitive.
It is rooted in the notion of “cloud,” which effectively spreads out the mass of each
particle over a region larger than its actual volume [57]. In this picture, the clouds
associated with two particles can overlap, which ensures a continuous passage
from one to the other. The cloud function A (r) must satisfy several conditions.
They are

/ooh(r)Zn'r dr =1, (6-1)
0
h(r) = 0 when r — o0, (6-2)
h(r) > 0. (6-3)

Equation (6-1) is the normalization condition, written here in two dimensions,
(6-2) states that a cloud is primarily localized around its associated particle, and
the inequality (6-3) ensures that the density p and temperature 7 will be positive
quantities. To simplify the calculations, we adopt a Gaussian distribution for the
cloud function A (r)

1 r?.
hir) = ),
@ 2ro? exp( 20’2)

where o is larger than the diameter d of a particle (for instance, o = 6d) and deter-
mines the extent of the clould. This enables us to define a density p, a macroscopic

“We have already defined in Section 4.2.1 a granular temperature as the driving force of a thermal
agitation by vibration which causes the detrapping necessary to set off an avalanche. It is not in the
least proven that this definition is identical to the one we are about to put forth in this section.
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velocity v, and a temperature T, through a series of three successive equations

N
px)y=m Y h(x; — xI),

i=l
N
pEV)=m Y ush(lx; — x|),
i=1
v¥(x)
>

N 2
PIT(x)=m Y Zh(lx; = xI) = p(x)
i=1

where N is the number of particles used in the simulation, and m is the mass of
each. These macroscopic quantities are continuous in space and time. It is pos-
sible to calculate their gradients, and as such they can be viewed as the usual
thermodynamic variables.

6.2. Simulations of Collisions

6.2.1. Introduction

As we saw in Chapter 3, event-driven (ED) methods consist in establishing a set of
general equations describing the dynamics of the system (for instance, Newton’s
equation, as spelled out in Section 2.2.2). Knowing the variables {x;, v;} for all
particles during a particular event, the next chronological event can be predicted,
and the procedure is repeated sequentially. Section 3.2.1 described the use of
this technique to model a one-dimensional pile of hard spheres in vibration. We
subsequently saw the same technique applied to problems of decompaction and
self-organization (Section 3.2.4). We will not dwell on this method any further.
The interested reader is encouraged to go back to the cited sections to review the
details. What we will do here is describe a procedure to get around problems of
accumulation which were mentioned before.

6.2.2. One-Dimensional LRV Procedure

The so-called LRV procedure (for Largest Relative Velocity) is useful when gran-
ules in a multiparticulate system come in contact and form what we have referred
to as blocks [59]. The power of the technique lies in its ability to avoid infinite com-
putational loops that arise when the particles, assumed to be made of hard spheres,
remain clustered. The algorithm relies on a logical test to make predictions about
the outcome. As such, it avoids situations that would result in impractically lengthy
calculations.> Figure 124 illustrates a specific case.

SResearchers doing numerical simulations frequently resort to such predictive techniques, which consist
in bypassing accumulation points leading to endless loops by deciding ahead of time the state a system
will find itself in. This type of trick, as it were, speeds up the computation time. It only works, of
course, to the extent that the predictions are indeed correct.
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Collision

FIGURE 124. Evolution of a group of five spheres, initially grouped in two blocks, for
& = 0.8 (after [59]).

Consider five spheres originally arranged in two blocks of two and three mem-
bers, respectively, about to collide. What is the trajectory of the five spheres after
the collision? Do the spheres coalesce into a single block? If not, do they separate
and perhaps rearrange themselves in a different pattern? Before solving this prob-
lem, it is useful to recall the definition given earlier of a “block” in the context of a
numerical simulation. Two colliding particles form a block if their relative velocity
is smaller than a predetermined value v, chosen according to the characteristics of
the computer used. From a practical standpoint, the velocity differences between
all pairs of adjacent particles forming a block have to be computed at every instant
identified by the ED algorithm. Let Av; =wv;_1 — v; designate those differences
for all adjacent pairs of a block. Pairs for which Av; < 0 do not collide, while those
for which Av; > 0 are likely to. The LRV procedure works as follows:

(1) We pick the adjacent pair with the largest value of Av;, or Av; = max(Av;),
at the moment of impact, and we let the particles (j, j — 1) collide.

(2) Collision matrices of the type described in Section 3.2.1 are used to calculate
an updated set of differences Av;.

(3) The previous two steps are repeated until all the differences Av; become
either smaller than v, (in which case the corresponding particles form a
block) or negative (in which case they fly apart).

It has been shown that this type of predictive approach does indeed lead to the
same result as the conventional ED method.

6.3. Molecular Dynamics (MD) Simulations

The so-called molecular dynamics (MD) methods benefit from a large menu of
algorithms developed and tried in many different test cases. It is fair to say that
this technique has matured to the level of an indispensable tool to simulate many
aspects of the dynamics of granular materials, provided that certain precautions
concerning time and spatial scales be taken. The technique relies on the concept
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of soft spheres and on a sequential calculation. The primary difference with event-
driven methods is that in the present case the duration #. of a collision is not zero.
The principle behind MD methods is to solve in regular incremental steps the
equations governing the changes in linear and angular momenta of the colliding
particles. The objective is to solve the following vector equations

I
Ap = A(mv) = mv — myy = / Fondt (6-4a)
0
and

M), = Tn— iy f r x F)dt, (6-4b)
0

where [ is the moment of inertia of the solid around its axis of rotation, » x F is
the torque exerted by the force F, and Fy, is the component of the force acting on
the center of mass. Once again, we emphasize that this strategy is quite different
from the one followed in ED models, which starts from the equations governing
momentum exchanges, in the manner described by (2-2) and (2-3). In the present
case, solving (6-4) requires a knowledge of the forces F and F.q,, of how they vary
in time, and of the duration ¢, of the collision. As a prerequisite to any molecular
dynamics simulation, it is essential to model as exactly as possible the forces
of elastic restitution and friction involved during collisions between particles. We
have already stressed on numerous occasions how fundamentally difficult this task
can be (see, in particular, Section 3.1.1), due to the inherently indeterminate nature
of the equilibrium forces in a granular stack, as they depend on its prior history, or
to our limited understanding of contact interactions between solids. This explains
the many forms of equations proposed by various researchers working on this
problem. The situation is not unlike that discussed in Section 4.2.2, in which we
reviewed a variety of functional dependences of the friction forces on velocity.

The goal of the next few paragraphs is to discuss the different types of behavior
we might encounter in modeling the contact forces F and F.,, which feed directly
into (6-4).

6.3.1. Elastic and Friction Forces

Linear and Nonlinear Equations

Consider a set of N spherical particles of diameter d;, where the index i runs from
1 to N [59]. If the particles are all identical, we obviously have d; = d for all
values of i. We can also envision without any difficulty a distribution (for instance,
Gaussian) of diameters d; centered on a value d and with a spread (Ad). Let r;;
be the distance between the centers of two particles of index i and j. In accordance
with Signorini’s conditions, which are widely used in matters pertaining to the
mechanical properties of contacts (see Section 6.4), the forces of contact come
into play only when d; + d; < 2r;;. When this condition is verified, three different
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contact forces are involved, at least under the assumption that angular momenta
can be neglected. In simplified vector notation, these forces are:

e A force of elastic restitution, related to the elastic energy stored during the
penetration of the two particles. This force is given by

£ = —K[1d +d)) — rij]nij, (6-5)

where n;; is the unit vector along the line connecting the centers of the parti-
cles i and j. This is simply the usual relation for the deformation of a spring
with stiffness K. It is obviously linear and, as such, incompatible with Hertz’s
penetration model (Section 2.2.2), which predicts a power law with an expo-
nent of % to describe how the force depends on the penetration distance. To
allow for this nonlinearity, (6-5) is modified to a slightly more general form
£ = —K[3@ +dp —ry] my, (6-6)
where § = % in the Hertz model, and 8 = —% in the case of a soft crust (see
Section 2.2.2).
e A friction force which opposes the rupture of contacts. It plays a dissipative
role similar to that of the Euler—-Coulomb dynamic friction. For generality,
two components are distinguished. The normal component is

£ = —2D,my; (vij - myj)ny;, (67

where m;; is the reduced mass of the system of two colliding particles i
and j, v;; is the difference between their velocities, and D, is a dissipation
coefficient characterizing the separation of contact along the direction of n;;.
Likewise, the tangential component of the friction force is

f,(i) = —=2Dm;; (v;; - t;)t;, ’ (6-8)

where t;; is a vector tangent to the contact, that is to say, perpendicular to n;;,
along the slip direction, and D, describes the corresponding dissipation.

Here again the linear approximation contained in (6-7) and (6-8) is sometimes too
limiting. The equations are often generalized in the form

£0 = —2D,mi;(vij - mip)[ (i + dj) — rij] mij,

valid only when 1 (d; + d;) > ry;.

It is extremely important to understand that dissipative processes introduced
in these equations to model friction are inherently dynamic in nature, Indeed,
these equations do not account for Coulomb’s static friction forces. The present
model applies exclusively to a dynamic analysis of granular piles, as does the ED
technique discussed earlier.
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Dashpot

FIGURE 125. Mechanical model simulating contact interactions by a coupled spring—
dashpot arrangement. The dashpot acts as a shock absorber,

Mechanical Analogies

The preceding equations were introduced purely phenomenologically. They may,
however, be interpreted in terms of more concrete models that give a physical
meaning to the parameters figuring in the equations. The simplest analogy is de-
picted in Figure 125. It features a spring (simulating elastic restitution) coupled to
a linear dampener.®

Such a simple system obviously cannot account for the subtleties of contact
interactions, such as the plastic deformations that typically occur when two collid-
ing spheres penetrate each other, as pointed out in Section 2.2.2. More elaborate
variants have been proposed to simulate these more complicated effects [38]. An
example is depicted in Figure 126. With enough creative imagination, other ar-
rangements can undoubtedly be contrived, but we should keep in mind that such
mechanical analogies have limitations and remain crude pictures of reality. Figure
126(b) describes the behavior of the system shown in Figure 126(a). The spring of
stiffness K| is compressed, simulating the two particles colliding and penetrating
each other. On Figure 126(b), the operating point moves up along the straight line
of slope K until its abscissa is equal to «. At that point, the ratchet mechanism
jumps down one notch, which causes the stiffness to suddenly increase to K.
If the system is allowed to relax in its new configuration, the operating point
moves back down along a different line of slope K5, until it reaches the point of
abscissa ay. Since the force has now returned to zero, the system is clearly leftin a
different state relative to what it was, which is consistent with the phenomenon of

6Such a dampener is sometimes referred to as LSD, for linear spring dashpot. Those fond of acronyms
will shortly be treated to an example of PLS, for partially latching spring.
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FIGURE 126. Mechanical model of the phenomenon of plasticity. It uses a set of coupled
springs, one of which activates a ratchet mechanism.

plastic deformation. As more and more notches get engaged, the operating point
describes increasingly skinny triangular sectors, as shown in Figure 126(b). The
plastic limit corresponds to the first notch on the ratchet. As long as that condition
is not exceeded, the regime remains linear with a stiffness K. Beyond that point,
two offset springs act in parallel, with a net stiffness K; — K. As intriguing as
this device may be, it still cannot reproduce Hertz’s nonlinear penetration regime.

6.3.2. MD Collision Model

This section deals with the equations that govern the collision between two par-
ticles. We begin with a linear elastic model, and move on next to discuss the
nonlinear elastic regime.”

Linear Model of a Binary Collision

We start with the simple case of two spheres colliding head-on, i.c., along a line
joining their centers. If the distance between the surfaces of two particles of index
i and j is denoted x, the differential equation governing x reads
d?x f(i) f(j)
a7 =
where f@ = £ 4 £® since only the normal force comes into play in a head-
on collision. For simplicity, the vector notation has been dropped. The previous
equation applies only when x = %(d,- +d;) —r;; > 0. Under these conditions, we
have
d’x dx 2
ﬁ + ME +wgx =0, (6-9)

780 as to limit ourselves to these regimes, we will refrain from discussing the simulations done by
Taguchi, who added to the equations a viscous dissipative term [105], [106].
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where p is a coefficient describing a dissipative term introduced earlier in (6-7).
Here we have u = D, and wy = /K /m;;, where, as usual, m;; is the reduced
mass of the system of two particles. We immediately recognize the equation of a
dampened harmonic oscillator, whose well-known solution is

x(t) = %e_’“ sin(@r), (6-10)

where vy is the relative velocity just before the collision, and @ is the frequency of
the dampened oscillation, with & = a)(z) — 2. The rate at which the distance x
varies is given by
dx
dt

The duration 7, of the contact is provided by the expression

- %eﬂ“[—u sin(@r) + & cos(@r)]. (6-11)

z o b4
& J(K/m)—(D/m)®

Contact ends when x (f,) becomes negative. Note that in the present model, ¢, is
independent of the relative velocity of the particles. We may define the equivalent
of the coefficient of restitution ¢ introduced in Section 2.2.2 by writing

. [dx/dt]=,
T ldx/dt)=o’

T D
&= eXp(—T) = exp(—%tC)
w

This last relation clearly demonstrates the link between the loss of momentum
during collision and the dissipative term D, (or w). The coefficient of restitution
also turns out to be independent of the relative velocity.

‘We are now in a position to calculate the maximum penetration depth xpax along
the same line we followed for Hertz’s model (Section 2.2.2). Maximum penetration
is obtained when the penetration velocity dx/dt vanishes at time ¢ = fy,¢. From
(6-10) and (6-11), the result is

.=

which leads to

Y . Vo . . [ @
Xmax = — € Hm Sin(@hnax) = —e #/® sin~! <—>
w wo wo
If the system is only slightly dissipative (for instance, when ¢ > 0.9), then wp > u,
and t,x approaches the value 27, as in the case of Hertz’s model. Under these
circumstances, xmax reduces to
Yo
Xmax = ——-
wo
In other words, the penetration depth is then proportional to the relative velocity of
the colliding particles. This result differs significantly from Hertz’s model, which
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predicts a much weaker dependence (as v, b 5). We thus arrive at the conclusion

that a linear elastic model deviates substantially from the physical behavior of
real collisions.® It seems necessary to devise a more realistic model incorporating
the nonlinear nature of the contact interactions. That is the objective of the next
paragraph.

Nonlinear Model of a Binary Collision

Using the same notation as previously, we write a generalized form of the differ-
ential equation (6-9)
d’x

d 12
=+ ZMx(d—j> +alxtE 0,

which may be rewritten in a more standard form [60]

d*x x\"dx x\*?
— dl -} — + Ed| = =0, 6-12
" (d) ar " (5) g 12

where E depends on Young’s modulus and Poisson’s coefficient of the material,
and n depends on the compression as well as the viscosity with respect to shearing.
We note in passing that the dissipative term in this last equation corresponds to a
purely viscoelastic interaction. As such, the equation does not account for plastic
deformations, permanent distortions, or dissipation of vibrational excitations via
phonons, all of which were mentioned during our discussion of Hertz’s model in
Section 2.2.2.

It is informative to consider a few particular cases in terms of values of the
exponents 8 and y:

(1) B =0and y = 0 corresponds to the linear interaction described by (6-9).

2) = % and y = 0 corresponds to the situation described by Hertz’s equation.
This can be verified as an exercise.

3 B = % and y = % corresponds to a generalized situation (Kuwabara and
Kono model) in which a viscoelastic compression is added to the normal
elastic interaction [107]. In this model, the nonlinearity stems from purely
geometrical properties of the penetration.

It should be fairly evident by now that modeling collisions between particles is not
easy. The physics of contact interactions is inherently complex and remains poorly
elucidated. Furthermore, good numerical algorithms are tricky to develop, because
they have to scrupulously take into account all the time constants involved (such
as the duration of collisions, the relative velocities, the time of free flights, and
others). Carelessness is likely to lead to unphysical results. To illustrate the point,
we proceed to discuss a completely artificial effect that comes up in models based

$We might come to the erroneous conclusion that the present simple model, based on coupled spring
and dampener, is useless. In fact, it can be shown that, as long as the contact duration f. is chosen
judiciously, in other words, realistically from the standpoint of the physics of the materials involved,
MD simulations yield results that turn out to be fairly satisfactory.

6.3 Molecular Dynamics (MD) Simulations 197

on soft spheres [60]. It has come to be known as the “detachment effect,” because
it causes an unphysical separation of particles undergoing multiple collisions. It
can best be understood by pursuing the simple model used in Section 3.2.1 to
describe the behavior of a one-dimensional stack of spheres subjected to a vertical
sinusoidal excitation.

The Detachment Effect

This effect comes up in both one- and multidimensional configurations. It results
from certain limitations of numerical simulations in hard-to-treat cases when the
separation between spheres is comparable to the penetration depth. In light of
our comments about the LRV procedure (Section 6.2.2), it is not hard to predict
that such situations may lead to erroneous numerical predictions. To highlight the
difficulties involved, we define an effective coefficient of restitution s.¢, consistent
with Section 2.2.2, by means of the expression

| Ef
Eeff = E_Os

where Ey and E; are the initial and final kinetic energies (before and after the
collision). It is important to choose a suitable variable to analyze this problem.
Numerical simulations suggest that one such variable is the ratio o = sg/(vot.),
where sy is the initial distance separating the colliding particles. Figure 127 shows
how e depends on o. The trend indicated in the figure seems to be “universal” in
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FIGURE 127. Effective restitution coefficient & plotted against the ratio so/vot. (see text).
The horizontal line at ge¢¢ &~ 0.34 corresponds to the result of the ED-LRV procedure
described in Section 6.2.2. The present results were obtained for a column of ten spheres
and with fixed walls. The parameters used for the calculation were: d = 1 mm, ¢ = 0.9
(the true coefficient of restitution), £, = 0.0022 s, and vy = 0.03 m/s (after [59]).
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the sense that the results of MD simulations obtained for an extremely wide range
of values of ¢, (over three decades) and vy (varying by a factor of 400) all line up
along the same curve.

The graph reveals a sudden change in the behavior of a column of spheres when
o = 1, that is to say, when the separation between particles becomes comparable to
the distance traveled during the duration of a collision. As the separation becomes
smaller than this critical value, the effective coefficient of restitution approaches
unity. Such a result is in flagrant contradiction not only with experiments, but
also with theoretical predictions that e should be a decreasing function of the
number of particles. Here we find, instead, that it becomes equal to or larger than
the coefficient of a single sphere, for which & = 0.9. Put another way, the column
appears far too “elastic,” which from a practical point of view leads to an artificial
separation of the colliding particles. No such problem exists when the initial sep-
aration is sufficiently large (o > 1), in which case the molecular dynamics model
agrees quite well with the results of the ED method. The latter technique, coupled
with an LRV procedure, correctly predicts that e.¢ does not depend on o. The arti-
ficial decompaction just discussed is at the origin of the designation *“detachment
effect,” whose meaning is further illustrated in Figure 128.

Here the effect is clearly demonstrated when the particles are initially in contact.
If we were to repeat the same calculations with particles initially separated by about
0.01 mm, the two techniques would produce virtually identical results.

There is, incidentally, another related phenomenon, known as the brake failure
effect, when particles collide tangentially [108]. It comes about for very much
the same reason. Here again, particles are slowed down considerably less in MD
simulations than in other, more realistic, mechanics-based models.

We conclude this brief review of molecular-dynamics models with a more
general remark, which in fact applies to all other simulation techniques as well.

0.2

.

E 01

el

2

Q

Ry

©

'—

0.0 . ; i ; P
0.25 0.5 0.75 0.25 0.5 0.75
Time (ms) Time (ms)

FIGURE 128. Trajectories of the centers of ten spherical particles. The MD model was
carried out using exponents 8 = % and y = 0 (Hertz’s model). Other parameters were:
£=0.86,andt =6 x 107 %sfora binary collision, vp = —0.2 m/s, and so = 0. The ED
model used the same values (after [59]).
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The results generally converge as long as the colliding particles spend most of
their time sufficiently far apart, in which case the dynamic behavior of the entire
system can be accurately modeled by a series of binary collisions. As soon as
more than two particles come in contact at the same time, several questions come
up. Are the collisions binary or ternary, or worse? Are we dealing with blocks?
The answers are never simple, even from a straight physics point of view. All
simulation techniques pay a price for this fundamental indeterminacy, although
the symptoms may differ in each case. These difficulties manifest themselves in
the form of inelastic collapse in ED models, or the detachment effect in their MD
counterparts. As we pointed out in Section 3.1.1, short of knowing the details
of interactions on a microscopic scale, we find ourselves rather helpless when it
comes to predicting the dynamical behavior of a simple stack of as few as three
particles when they are almost in contact.

6.4. Simulation of the Dynamics of Contacts

Fueled by a number of advances and remarkable successes, this technique is cur-
rently enjoying increasing popularity [109], [110]. It is rooted in basic research
work on the mechanical properties of contacts. As we have emphasized repeat-
edly, the physics of granular materials is essentially governed by the mechanical
properties of contacts. The merit of the technique we are about to present is to
incorporate, as accurately as possible, a description of the various interactions
between solids, consistent with the picture developed in Chapter 2. ED and MD
methods are inherently dynamic in nature, and as such, they are ill-equipped to
deal with prolonged contacts; indeed, they are essentially useless for modeling the
static properties of granular piles. This points to the need for improved models. As
noted in previous chapters, solid friction introduces not only an indeterminancy in
the forces of contact (Section 3.1.1), but also complex stick—slip phenomena, all
of which can be traced to the discontinuous nature of the forces involved when two
solids in contact are displaced tangentially. By all indications, these discontinuities
should play a critical role in the dynamic properties of granular materials.

Unfortunately, precisely because these forces are discontinuous, it is virtually
impossible to write down an expression of the type T = f(v;, y;) that describes
how the tangential friction force depends on the velocity and acceleration of the
objects in contact (v, and y; are the tangential velocities and accelerations, re-
spectively). That is, of course, a major obstacle to devising an exact numerical
treatment of the problem. Faced with this challenge, a number of researchers have
proposed ways to “tame” the laws of contact, as it were. The underlying idea is
illustrated in Figure 129.

It is useful to examine in more detail the nature of these irregularitics. We
distinguish three possible situations:

e As we know, the law of dry friction exhibits a discontinuity—more precisely,
an indeterminacy if we do not know the past history of the contact—when
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FIGURE 129. The diagrams on the left correspond to Coulomb’s Iaw‘ _0f dr)f f l;iciion. I and
N are tangential and normal forces. The diagrams on the right show SIIgnor.mt s cnn(.lltmr?s.
D is the distance between contact points. Both upper diagrams are discontinuous. The d1§-
continuities have been partly mitigated in the lower figures. The gefltler form of Coult.)mb §
law implies a viscous interaction in the vicinity of the contact, \thlc that corresponding 1o
Signorini's condition assumes an elastic reaction when the solids get close to each other

(after [111]).

the tangential velocity at the point of contact is zero. In this case, v, = 0
and y, = 0, and the tangential resistance force can take on any v'ah‘le between
— s N and +p,N . The contact forces are not activated. Static fm:'t!on exactly
offsets all other forces applied to the contact, preserving the condition y; = 0.

e If a sufficiently large tangential force is applied, the contact givcs.; way (¢ #
0). The equality 7 = — 4, N sign () holds, even just before motion actually
begins (i.e., when we still have v, = 0). In this situation, the forces of contact
are fully activated. '

o The contact is said to be gliding when v, # 0,in whichcase T’ = — wa N sign

(vy)-

A similar analysis can be done on the basis of Signorini's conditions, which dc.-.al
with the normal, rather than tangential, forces. They apply to hard objects, consid-
ered impenetrable in the sense defined earlier:

e When v, = 7, = 0, the normal force opposing penetration can have any

value N > 0. . .
e Contact is broken the moment v, = 0 and y, > 0,1n which case the normal

force N must vanish.

From this point of view, Signorini’s conditions exhibit very much the same type
of discontinuity as Coulomb’s law.
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FIGURE 130. Schematic interpretation of the indeterminacies concerning the friction
forces (after [111]).

Aninteresting exercise is to try to rederive the indeterminacies mentioned earlier
on the basis of the above diagrams.’ The fundamental equations of the dynamics
of a system of two particles of reduced mass #meq in contact can be written (in
projection on the principal axes at the contact point) as'”

N = Mgy + Oy

and

T = meay, + &,

where @, and ®, are the normal and tangential components of the reaction force
due to friction. These components depend on the mode of contact between the
two particles, but not on the external forces, since we deliberately treat the two
separately. If we work in the frame of reference attached to the contact point
between the two particles, the fundamental equations are represented in the above
diagrams by straight lines with a positive slope. These straight lines would intersect
the discontinuous curves at a single point, as shown in Figure 130, which implies
a unique solution. The problem is somewhat more complicated in the case of
dry friction. Whether the solution is unique or not depends on the experimental
conditions and the way Coulomb’s friction is modeled. Figure 130 reveals the
following:

o If dry friction is modeled with a single coefficient u = u; = g, the solution
is always unique for a dynamic interaction.

e For a static interaction, the straight line describing the fundamental equation
becomes vertical, and the solution becomes undetermined (with an infinity of
solutions).

9 An excellent analysis of these indeterminacies and how to handle them mathematically can be found
in [111].

19Here we neglect any possible rotation of the particles. It could easily be added to the equations, but
it would not materially change the argument.
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o If dry friction is modeled with two different friction coefficients jt; and ji .,
with jts > jtg, the straight line can intersect Coulomb’s graph at two distinct
points, and the solution is obviously not unique. Which solution the system
chooses depends on its prior history, which opens the door to the kinds of
hysteresis effects discussed in Sections 2.3 and 3.1.1. That is a commonly
recognized characteristic studied in structural analysis [112].

These considerations may well elicit growing skepticism that it will ever be possible
to accurately model any granular system that is subject to such intrinsic indetermi-
nacies. As we now know, these indeterminacies all come from the discontinuous
character of the static resistance force. One way to get around this problem is to
resort to well-behaved functional dependences of the type depicted in the lower
part of Figure 129. Another way is to consider the static situation simply as a
limiting case of the dynamic problem (when v — 0). Such arguments may indeed
be viewed as a posteriori justifications of the MD and ED simulations techniques
which, being inherently dynamical approaches, avoid these problems entirely. It
is also essential to bear in mind that we have considered only hard objects (in the
sense of the hard spheres in ED simulations). The creation and rupture of micro-
contacts is unlikely to be as discontinuous as implied by the standard conslitutive
Jaws. It is in fact quite plausible that smoother functions might describe real phe-
nomena more realistically. What we can say with some confidence is that various
models based on the arguments presented above generally lead to results in good
agreement with experiments [111]. This includes ED and MD simulations, as well
as others to be discussed in the latter part of this chapter. There is no compelling
reason to promote any one technique over another. In all likelihood, a particular
approach, based on specific simplifying assumptions, can be perfectly adequate in
certain circumstances, and completely break down in others. The best strategy is
to be flexible and keep an open mind.

We proceed next to discuss two more simulation techniques, based on pro-
cedures for synthesizing piles. These methods may appear somewhat primitive
when compared to the ones reviewed thus far. Yet, they too turn out to produce
very satisfactory results, at least when the geometry of a pile is an important factor.

6.5. Monte Carlo (MC) Simulations

There exists an extensive literature on the topic of Monte Carlo simulations. It is
not our purpose here to offer a comprehensive analysis of the technique, which has
been used to solve a great many problems in statistical mechanics, among other
applications. Instead, we will highlight its ability to provide numerical solutions
to some important problems in the physics of granular materials. We will do so
by using the celebrated example of the “Brazil nut problem” [88], [92], [113]. As
discussed in Section 5.2, it involves the phenomenon of segregation by size. We
will later on introduce a rather different approach, known as the method of steepest
Toamont which hac alea nroven verv useful.
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We start by emphasizing the sequential character of the stacking method used by
both methods. Time is managed in both cases by providing for a relaxation phase
between successive stages of building up the stack. In that sense, we are dealing
here with a truly sequential procedure of the type we described in connection with
the SOC cellular automation model (Section 4.2.1). The chain of events can be
represented symbolically by

preparation = relaxation = stacking = relaxation = etc.

Let T be one period of the stacking—relaxation cycle. It is worthwhile to pause a mo-
ment to understand the implications and limitations of this strategy, in the light of
what we have learned in previous chapters about collision models and the behavior
of granular piles. First of all, this procedure obviously overlooks the dynamical
properties of collisions. Barring additional refinements, it ignores all the problems
associated with solid frictional dissipation, whether static or dynamic. Accord-
ingly, we should not expect this approach to properly describe the behavior of a
collection of particles in frequent collisions. To be more specific, we designate by
71 the time interval between the two closest sequential events defining the dynam-
ics of the pile. In the language of ED modeling of a vibrated one-dimensional stack
(Section 3.2.1), 7; would be the time between two successive collisions. As we
have seen, this time can become infinitesimally small, giving rise to what is known
as “inelastic collapse.” Under these same circumstances, tracking the evolution of
the system with an MD method would require sampling with a period T < 7,
which could easily entail prohibitive computational times. Short of that, the subtle
details of the mechanics of systems undergoing multiple collisions would be at risk
of being missed. This would be equivalent to neglecting events on a short spatial
scale A (of the order of the distance separating particles), which could lead to er-
roneous results. The Monte Carlo method specifically deals with successive states
of a granular medium after it has relaxed. As such, it is particularly well suited to
describing the physics of granular objects over fairly long time intervals, such as
when they are excited periodically and sufficiently slowly to leave enough time for
the pile to relax between successive excitations.'! With these precautions in mind,

the stacking techniques discussed here can be extremely valuable, notably for the

purpose of analyzing the phenomenon of segregation by size [113]. The next para-

graph outlines the practical steps required to implement a Monte Carlo simulation.

Monte Carlo Technique for Stacking and Relaxation

The methodology described here was originally used in numerical simulations
of the Brazil nut problem [88], [113]. It subsequently benefited from a number
of improvements which led to results in perfect agreement with the topological
models discussed in Section 5.2.1 [92]. For pedagogical purposes, we will begin

1Tt might be worthwhile to reread the portion of Section 3.2.1 dealing with the excitation period T in
relation to the relaxation time t of the system. We can also appreciate that the MC method should
be applied preferably to materials with a low coefficient of elastic restitution ¢, simply because the
relaxation following excitation is typically a fairly rapid phenomenon.
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by following fairly closely the traditional way of using Monte Carlo calculations.
We will subsequently discuss the specifics of applying the technique to granular
materials.

Although we could, without unduly complicating the problem, treat the case of
a three-dimensional pile of dissimilar granules, we consider, instead, a collection
of identical disks of diameter d. These disks, assumed to be impenetrable, are
initially arranged randomly in a hypothetical vertical two-dimensional container
without walls.'? In practice, this is approximated by using a ring-shaped container.
The initial configuration of such a system of N disks is described by a generalized
vector encompassing the coordinates of all centers

F={r,rnr,...,rn}

The potential energy E, () of the system is given by
N
E,(F) =Y mgzj, (6-13)
j=1

where m is the mass of an individual disk and z; is the altitude of its center.
The Monte Carlo method is based on analyzing the probability P of different
configurations 7, each of which has an energy E; (7). Thermodynamics tells us that

N 1 Ey(7)
PLEy(F)] = 0 CXP[— T ]

where Q is the partition function of the system, and 7' is its absolute temperature.
Note that this last expression characterizes all the configurations that are equivalent
from an energy point of view, in equilibrium at temperature T'. They only differ
by the actual positions of the individual disks.

The technique consists in examining the probabilities of all possible configura-
tions arrived at by moving every disk in the population within a small region of
area §2. We write this process as a set of equations

X =xj+ &8 (6-14a)
and
7y =1z, +&8, (6-14b)

where &, and &, are independent random variables equally distributed in the in-
terval [—1, +1], and § > 0. So as to ensure that the disks do not penetrate each
other during the successive trials, we require that the interaction between adjacent
particles be governed by a potential energy U (s) of a pair such that

U@)=0 if s>d (6-152)
12 his is a crucial restriction. We have seen in Chapters 3 and 5 that walls induce convection effects

in granular media. By getting rid of them, convection is conveniently eliminated. All thatis then left
are seometrical phenomena, such as “arch effects” of the type described in Section 5.2.1.
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and
U(s) = o0 if s<d. (6-15b)

The trials conducted according to (6-13) through (6-15) must be evaluated for
plausibility against the following criteria:

o If the quantity
AE = E(F)— E@F) <0, (6-16)

the new configuration has a lower energy than the one we started with. It is
therefore retained for subsequent calculations.

e If AE > 0, the solution 7 is not necessarily rejected, as it may well be
accessible via simple thermal agitation. It is therefore assigned a probability
given by

P(AE) =

PLE(F)] ( AE)‘ 6-17)

PIEG)] P\ kT

In turn, this probability is compared to a random number £ uniformly dis-
tributed between 0 and 1. If P(AE) > &, the solution is retained. If not, it is
discarded, and another one is tried.

The procedure calls for jiggling every single particle of the system, until each
member of the population has had its turn, which completes one iteration. The
new configuration is then used as a fresh starting point for the next iteration, in
which all particles are moved about all over again and allowed to relax, and so
forth.

Some comments on the temperature of the system are in order. The method
we have just described is essentially what is used traditionally for Monte Carlo
simulations of Brownian systems. When it is applied to macroscopic objects like
granular materials, the significance of equations involving the thermal energy kT
raises some legitimate questions.

As pointed out in Chapter 1, the Brownian motion of typical systems of inter-
est here is entirely negligible, the ratio mgAz/kT being of the order of 10'? at
ordinary temperatures. If so, (6-17), and the criterion associated with it, gives a
probability that is always practically zero. In other words, the only really relevant
equation for a granular system is (6-16), which means that the potential energy
can only decrease at each step of the iteration. This is equivalent to assuming that
the temperature of the system is at absolute zero. The clear implication is that the
system traps particles in potential wells from which they cannot escape without
collisions on a microscopic level. In accordance with our earlier discussions, it
is clear that this simulation strategy amounts to neglecting the short-range inter-
actions normally associated with multiple collisions—which are equivalent to a
local temperature of the granular. Rather, it deals fundamentally with systems in
their relaxed states.
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Despite these restrictions, this type of simulation technique has proven extremely
useful to model a number of situations, such as a pile of dissimilar particles. By way
of summary, we emphasize again that, by its very nature, this particular technique
is not a good choice to describe nonrelaxed configurations, where particles spend
only a fraction of their time in actual contact. One important example is that of
fluidized beds, which are more suitably treated by ED or MD simulations.

6.6. Sequential Model of a Pile

Monte Carlo simulations were based on keeping track of the energy of the various
geometrical configurations a pile of N particles can find itself in. The system
evolved from an initial state of energy E (7) to a final state of energy E(#'), with
E(#) < E(F), without us having to worry at all about the details of the relaxation
process. Another strategy would be to mimic as realistically as possible the local
mechanical properties of the system. That is precisely the idea behind the so-calted
method of steepest descent [91).

The principle of the technique is illustrated in Figure 131. The objective is to
model the way particles fall down on top of each other. The algorithm can be
summarized as follows:

e Spherical particles are dropped sequentially on top of the forming pile in a
random manner, in the sense that the coordinate x where they are deposited
is a random variable, as described in [114].

o After a particle is dropped at a random spot, it follows a “natural” downward
slope, along a path described as the steepest descent, until it finds a position of
local equilibrium. Such a position, marked “stop” in Figure 131, occurs when
the vertical projection of the particle’s center crosses the line connecting

FIGURE 131. Tllustration of the method of steepest descent (after [116]).
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the centers of the two underlying particles. We note, incidentally, that this
assumes the absence of any rebound when the particle raches that favorable
spot, in accordance with earlier remarks on these stacking methods.

e Once a particle stops, it becomes permanently embedded in the pile.

Agitation can be simulated, for instance, by perturbing the entire system upward
and leaving it to relax on its own. This can be accomplished in the following
manner:

(1) A pile is first generated, by randomly depositing particles one at a time
and allowing them to relax after each addition, using the algorithm just
described.

(2) The stacked particles are numbered in ascending order starting from the
bottom.

(3) The entire pile is raised (fictitiously), and each particle is left to fall down
individually, again using the above algorithm. The process starts with the
lowest-numbered particles and gradually works its way up. To some extent,
it preserves a memory of the pile’s prior configuration.'

(4) Steps (2) and (3) are repeated many times, thereby simulating a vertical
vibration.

This type of simulation is relatively frugal in terms of computation time. It is the
technique of choice to treat cases involving large numbers of particles in three
dimensions. However, the limitations discussed in the context of the Monte Carlo
method apply here as well. Both techniques are good choices to treat a series of
relaxed states, to the specific exclusion of rapid interactions and multiple collisions
that may occur in real systems. The method of steepest descent is particularly well
suited to dealing with problems in which geometry is of paramount importance.
It has produced results in relatively good agreement with experiments. Perhaps its
greatest claim to fame is to have predicted the existence of critical diameters in the
Brazil nut problem, similar to the ones we found analytically in Section 5.2.1.14

13We encourage the reader to refresh his or her memory by going back to the part of Chapter 3 that
describes the various modes of decompaction of a pile under vertical excitation, particularly in one
and two dimensions. This will provide further opportunities to reflect on the degree of realism of the
present algorithm.

14The algorithm described here was originally developed by Jullien et al. [91]. Interestingly, early
versions did not include noise, that is to say, random fluctuations of the particles’s positions during
the stacking of the pile, making it entirely deterministic. One consequence was that segregation was
precluded for @ < @, whereas the analytical model in Section 5.2.1 predicts merely a change in
behavior as the critical value @, is crossed. A noise source was subsequently added to the model,
and a more realistic behavior did indeed result from this improvement.



