Non-linearity $\quad x_{n}\left(1-x_{n}\right)$
ω fractal behaviour and chaos
Complex Iterator (using complex numbers)

$$
\begin{aligned}
i^{2}= & -1 \\
z= & (x+i y) \\
& \text { Real }^{\tau} \quad{ }^{\tau} \text { Imaginary } \\
z= & r e^{i \theta}
\end{aligned}
$$

let $w=u+i v \quad$ Addition $z+w=(x+u)+i(y+v)$ Multiply z.w

$$
\begin{aligned}
& x \cdot u+i x v+i y u+\underbrace{i^{2} y v}_{-y v} \\
& \left.z^{2}=(r \cdot u-y v)+i(x v+y u)^{i \theta}\right)^{2}=r^{2} e^{i(2 \theta)}
\end{aligned}
$$

Simplest case would be $\sqrt[z_{n+1}]{ }=z_{n}^{2}$

\longrightarrow Julia Set

$$
z_{n+1}=z_{n}^{2}+C
$$

Julia set for

$$
c=-0.5+0.5 i
$$

Connected
Unconnected

A grid of Julia Sets for different values of C
\qquad
of C
Mandelbrot set $M=\left\{c \in \mathbb{C}\left(J_{c}\right.\right.$ is connected $\}$
Another definition:

$$
M=\left\{z_{0}=c \in \mathbb{C} \mid z_{n+1}=z_{n}^{2}+c<\infty\right\}
$$

if $\left|z_{n}\right|>r(c)$ then it escapes to ∞ and not a part of M.

$$
\Gamma(c)=\max (|c|, 2)
$$

M
Colors: according to low many steps to escape. How "close" you are to the Mandelbrot set.
for all pixels on screen (values of c):

$$
\begin{aligned}
& k=0 \\
& z=C \quad(k<100)
\end{aligned}
$$

if $(|z|>r(c))$ then draw point with $\operatorname{color}(k)$ (naM)
draw point with $\operatorname{color}(K)$
mark ($c \notin M$)

$$
\begin{aligned}
& z=z * z+c \\
& k=k+1
\end{aligned}
$$

draw point with color ("black") mark $(c \in M)$

Ordinary Differential Equations (ODEs)

In general we can write

$$
\begin{gathered}
\frac{d y_{i}}{d x}=f_{i}\left(x, y_{0}, y_{1}, \cdots y_{N-1}\right) \\
i=0 . . N-1 \\
\frac{d y}{d x}=\underline{f}(x, y)
\end{gathered}
$$

What does it mean?

Different boundary conditions Boundary condition
Dirchlet B.C.

$$
y_{i}\left(x_{\text {start }}\right)=y_{i}^{\text {start }}
$$

$$
y_{0}=y\left(t_{0}\right)
$$

Initial condition

Non Neumann B.C.

$$
\frac{d y_{i}\left(x_{\text {start }}\right)}{d x}=\begin{gathered}
\text { Slope given } \\
\text { Sone where }
\end{gathered}
$$

