non-linearity: $\quad x_{n}\left(1-x_{n}\right)$
Complex Numbers: $\quad i^{2}=-1$

$$
z=(x+i y)
$$

Real $i \theta$ Imaginary

let $\quad z=r e=x+i y$

$$
\begin{aligned}
w & =u+i v \\
z \cdot w & =(x+i y)(u+i v) \\
& =(x u-y v)+i(y u+x v) \\
z^{2} & =\left(r e^{i \theta}\right)^{2}=r^{2} e^{i(2 \theta)}
\end{aligned}
$$

Complex Iterator:

A bit boring...
What about $z_{n+1}=z_{n}^{2}+C$ T add a complex
What is the Julia Set constant of this Iterator?

For $c=-0.5+0.5 i$
A connected J_{c}.

Unconnected J_{C}
"Dust"

Mandelbrot set: $M=\left\{c \in \mathbb{C} \mid J_{c}\right.$ is connected $\}$
Another def:

$$
M=\left\{z_{0}=c \in \mathbb{C} \mid z_{n+1}=z_{n}^{2}+c<\infty\right\}
$$

If $\left|z_{n}\right|>\Gamma(c)$ a critical radius, then
it will always escape to ∞ !

$$
r(c) \equiv \max (|c|, 2)
$$

Colors: according to how many steps to "escape" that are needed. How "close" to the Mandelbrot set you come.
$k=0 \quad D_{0}$ for all pixels in c
$z=c$
while $(k<100)$ \&
if $(|z|>r(c))\{$
Draw point with color (k); ${ }_{3}$ return $(c \notin M)$;

$$
\begin{aligned}
& z=z * z+c \\
& k=k+1 \\
& \xi
\end{aligned}
$$

Draw point with color ("Black") return $(c \in M)$;
In population growth: $\frac{P_{n+1}-P_{n}}{P_{n}}=r \quad \frac{1}{P} \frac{d P}{d t}=r$
Differential Equations:
ODE: ordinary diff. equations $\&$
PDE: partial diff. equations

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+q(x) \cdot \frac{d y}{d x}=r(x) \quad \begin{array}{l}
\text { Is an ODE but } \\
\text { it is not in } \\
\text { simplest form, it's } \\
2^{n d} \text { order. }
\end{array} \\
& \frac{d y}{d x}=z(x) \\
& \frac{d z}{d x}+q(x) \cdot z(x)=r(x)-q(x) z(x)
\end{aligned}
$$

$$
\frac{\left.\left|\frac{a \tau}{d x}\right|+q(x) \cdot \tau(x) \right\rvert\, \cdots,}{2 \times 1^{\text {st }} \text { nder equations } \frac{d}{d x}}
$$

Generalize this:

$$
\begin{aligned}
& \frac{d y_{i}(x)}{d x}=f_{i}\left(x, y_{0}(x), y_{1}(x), \cdots, y_{N-1}(x)\right) \\
& i=0 \ldots N-1
\end{aligned} \quad \begin{aligned}
& \frac{d y(x)}{\frac{d y}{d x}=f(x, y) \quad f(x, y)} \\
& y\left(x_{\text {stant }}\right)
\end{aligned}
$$

