SPH Gleichungen

$$
\begin{aligned}
& \rho_{i}=\sum_{j \in N N_{j}} m_{j} W\left(\left|s_{i}-r_{j}\right|, h_{i}\right) \\
& A_{i}=\sum_{j \in N N} \frac{m_{j}}{\rho_{j}} A_{j} W\left(\left|r_{i}-r_{j}\right|, h_{i}\right) \\
& \nabla A_{i}=\sum_{j \in N N} \frac{m_{j}}{\rho_{j}} A_{j} \nabla W\left(\left|\check{I}_{i}-r_{j}\right|, h_{i}\right) \\
& \frac{\partial W}{\partial r}=\frac{6 \sigma}{h^{d+1}}\left\{\begin{array}{cl}
\left(3\left(\frac{r}{h}\right)^{2}-2\left(\frac{r}{h}\right),\right. & 0 \leqslant \frac{r}{h}<\frac{1}{2} \\
-\left(1-\left(\frac{r}{h}\right)\right)^{2}, & \frac{1}{2} \leqslant \frac{r}{h}<1 \\
0, & \text { sonnst }
\end{array}\right. \\
& \sigma=\frac{40}{7 \pi} \text { in } d=2 \\
& \nabla w\left(\left|r-r^{\prime}\right|, h\right)=\frac{r-r^{\prime}}{\left|r-r^{\prime}\right|} \frac{\partial w}{\partial r}
\end{aligned}
$$

es gilt $\nabla \omega\left(\left|r-r^{\prime}\right|, h\right)=-\nabla^{\prime} w\left(\left|L-r^{\prime}\right|, h\right)$

$$
\nabla \cdot \underline{v}=\sum_{b} \frac{m_{b} \underline{v}_{b}}{\rho_{b}} \cdot \nabla w\left(\left|r-r_{b}\right|, h\right)
$$

nein, man benützt lieben

$$
\begin{aligned}
& \nabla \cdot \underline{v}=\frac{1}{\rho}\left[\nabla \cdot(\rho \underline{v})-\underline{v} \cdot \nabla_{\rho}\right] \quad w_{a b}=w\left(r_{a}-v_{b} \mid h_{a}\right) \\
& \frac{1}{\rho_{a}}\left[\sum_{b} \frac{m_{b}}{\rho b} \rho_{b} \underline{V_{b}} \cdot \nabla_{a} w_{a b}-\underline{V}_{a} \cdot \sum_{b} \frac{m_{b}}{\rho_{b}} \rho^{b} \nabla_{a} w_{a b}\right] \\
& \rho_{a}(\nabla \cdot \underline{v})_{a}=\sum_{b} m_{b}\left(\underline{V_{b}}-\underline{V_{a}}\right) \cdot \nabla_{a} W_{a b} \\
& \begin{aligned}
\frac{d v_{a}}{d t}=- & \left.\frac{\nabla P_{a}}{\rho_{a}} \quad \begin{array}{rl}
\frac{\nabla P}{\rho} & =\nabla\left(\frac{P}{\rho}\right)+\frac{P}{\rho^{2}} \nabla \rho \\
\text { Anvalich wite } \\
\text { vorher }
\end{array}\right)
\end{aligned}
\end{aligned}
$$

Anateon wis

$$
\frac{d v_{a}}{d t}=-\sum_{b} m_{b}\left(\frac{p_{b}}{\rho_{b}^{2}}+\frac{p_{a}}{\rho_{a}^{2}}\right) \nabla_{a} W_{a b}
$$

Newton's $3^{\text {ter }}$ Satz $\Rightarrow F_{a b}=-F_{\text {ba }}$
Spezifische Energie: e_{a}

$$
\begin{aligned}
& \frac{d e}{d t}=-\left(\frac{P}{\rho}\right) \nabla \cdot \underline{v} \\
& \frac{d e_{a}}{d t}=\left(\frac{P_{a}}{\rho_{a}^{2}}\right) \sum_{b} m_{b}\left(\underline{v}_{b}-\underline{v}_{a}\right) \cdot \nabla_{a} W_{a b}
\end{aligned}
$$

Erhaltung der Masse $\rho_{a}=\sum_{b} m_{b} W_{a} b_{b}$
oder $\frac{d \rho_{a}}{d t}=\sum_{b} m_{b}\left(\underline{V}_{a}-\underline{V}_{b}\right) \cdot \nabla_{a} W_{a} b$

Künstliche Viscositait

$$
\begin{aligned}
\frac{d \underline{v}_{a}}{d t}= & \sum_{b} m_{b}\left(\frac{P_{b}}{\rho_{b}^{2}}+\frac{P_{a}}{\rho_{a}^{2}}+T_{a b}\right) \nabla W_{a b} \\
+\quad & \Gamma-\alpha \overline{C_{-1}} N_{a b}+R N_{a l}^{2} \ldots A_{n}
\end{aligned}
$$

ul

$$
\begin{aligned}
& \pi_{a b}=\left\{\begin{array}{cc}
\frac{-\alpha \overline{C_{a b}} N_{a b}+\beta N_{a b}^{2}}{\overline{\rho_{a b}}}, \stackrel{\sqrt{a b} \cdot r_{a b} \delta_{0}}{ } \\
0 & , V_{a b} \cdot \Gamma_{a b}>0
\end{array}\right. \\
& \mu_{a b}=\frac{h\left(v_{a b} \cdot \Gamma_{a b}\right.}{r_{a b}^{2}+\eta^{2}} \quad \bar{\rho}_{a b}=\frac{1}{2}\left(\rho_{a}+\rho_{b}\right) \\
& \text { Keein } \quad \overline{C_{a b}}=\frac{1}{2}\left(C_{a}+C_{b}\right) \\
& C=\sqrt{\frac{P \gamma}{\rho}} \\
& c=\sqrt{\gamma(\gamma-1) e^{\gamma}} \\
& \beta=2 \alpha \quad \alpha \sim 1 \quad 0.5
\end{aligned}
$$

LEAP FROG für SPH (Drift-kick-Prift
Variabeln: $I, \underline{v}, e, C, \rho$ Zusatz Varialol: $\underline{a}, \dot{e}, \underbrace{\text { Vpred, Epred }}_{\text {Leapfrog. }}$
DRIFT1 (Dt=0);
CALCFORCES (); gibt uns a, e $(t=0)$
for (step=0; step<Nstep; t+ step) \{ DRIFT1 ($\Delta t / 2) ; \Leftarrow$ braucht a, i CALCFORCES () ; $K \mid c K(\Delta t)$;

$$
\begin{gathered}
\text { KICK } \Delta t) ; \\
\text { DRIFT2(Dt/2); } \\
3 \\
\text { CASCFORCES (L) }\{
\end{gathered}
$$

TreEBullb ():
NN-DICHTE (alle Teilchen rechnem ρ) $C A L C$ - SoUND (alle Teilchen rechnen c)
NN_ SPHFORCES (alle $\begin{gathered}c=\sqrt{\gamma(\gamma-1)} \text { epred } \\ \underline{a}, \dot{e})\end{gathered}$

$$
\begin{aligned}
& 3 \\
& \text { DKIFT1(} \Delta t)\{ \\
& \underline{r}+=\underline{V} \Delta t{ }^{j} \\
& V_{\text {prep }}=\underline{v}+a \Delta t ; \\
& e_{3}^{\operatorname{erred}}=e+\text { e } \Delta t ; \\
& k \operatorname{kck}(\Delta t)\{ \\
& \underline{V}+=\underline{a} \Delta t ; \\
& e_{3}+=\dot{e} \Delta t ; \\
& E t=v \Delta t ;
\end{aligned}
$$

