Genanigkeit den Gravitationsberechwns. $\theta\left(N^{2}\right)$ Naive

Als N grösen wind:
Strenen von 2 Stune

gename Kräfte nichd so wichtig wie viele Teilchen (Statistischer Geraniglait)

W ir wallen die Kräfte von a und b vagleicren.
$f_{a}>f_{b}$ Dor relative Ferlen

$$
\Delta=\frac{\varepsilon_{a}}{f_{a}}=\frac{\varepsilon_{b}}{f_{b}}
$$

Für Maschinengenaniglait $\sim 10^{-14}$

$$
\begin{array}{r}
\left(f \pm\left[F_{\text {ehlen }}\right]\right)=\left(f_{a}+f_{b}\right) \pm \Delta\left(f_{a}+f b\right) \\
\text { dominient } \left.^{(}\right)
\end{array}
$$

Dfb ist eigentlich viel zu genan fïr diese Berechumg.

$$
\frac{=\left(f_{a}+f_{b}\right) \pm \Delta f_{a}}{\langle\text { fehlen }\rangle=\sqrt{\Delta^{2} f_{a}^{2}+\Delta^{2} f_{b}^{2}}} \text { RMS }
$$

Multipole Entwicklang:

$$
\begin{aligned}
& \psi=-\sum_{i \in V} \frac{m_{i}}{\left|r_{i /}\right|}=\sum_{i \in v} m_{i} \gamma\left(r_{i}\right) \\
& r_{i} \\
& \gamma=-\frac{1}{r} \\
& =\sum_{i \in v} m_{i} \gamma\left(\left|\underline{r}_{c m}+\underline{x}_{i}\right|\right) \\
& =\sum_{i \in V} m_{i}\left[\gamma\left(r_{o m}\right)+\frac{\partial}{\partial r^{j}} \gamma^{\prime}\left(r_{c m}\right) x_{i}^{j / \text { piapole vactor }}\right. \\
& +\frac{1}{2} \frac{\partial^{2}}{\frac{\partial^{j} \partial r^{k}}{\partial-\text { Rang Tensen }} r\left(r_{c m}\right) x^{j k}+\cdots \text { Quadrupole }_{\text {Te ither }}^{\text {midar }}}
\end{aligned}
$$

Wie die Ableitungen den Green's Function Zu berechnem?

$$
\begin{aligned}
& \gamma(r) \equiv \gamma_{0}=-\frac{1}{r} ; \gamma_{m+1}=-\frac{(2 m+1)}{r^{2}} \gamma_{m} \\
& \frac{\partial}{\partial r} \gamma_{m}=\gamma_{m+1} I \\
& \partial \gamma_{0}=-\frac{1}{r^{2}} \gamma_{0} r=\frac{r}{r^{3}} \quad r \equiv r_{c m}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i \in V} m_{i}\left[-\frac{1}{r}+\frac{1}{r^{3} r_{j} x^{j}+\partial \partial \gamma\left(r_{c m}\right)}{ }^{\prime \prime} \underline{\bullet} \cdot \underline{x^{\prime \prime}} \quad\right] \\
& \partial\left(\gamma_{1} r\right)=\gamma_{2} \underline{r}+\gamma_{1} \delta \\
& \gamma_{2} r_{j k}+\gamma_{1} \delta_{j k} \\
& \gamma=-\frac{3}{r^{2}} \gamma_{1}=-\frac{3}{r^{5}} \\
& \psi=\sum_{i \in v} m_{i}\left[-\frac{1}{r}+\frac{1}{r^{3}} r_{j} x_{i}^{j}+\frac{1}{r^{3}} \delta_{j k} x_{i}^{j k}-\frac{3}{r^{5}} r_{j k} x^{j k}\right] \\
& M=\sum_{i \in v} m_{i} \quad M^{j}=\sum m_{i} x_{i}^{j} \stackrel{!}{=} \varnothing \\
& M^{j k} \sum_{j k} \text { des Massmzent. } \\
& \text { des Massmzent. } \\
& \left\{\begin{array}{r}
\Psi=-\frac{M}{r}+\frac{r_{j} M^{j}}{F^{3}}+\frac{1}{r^{3}} \operatorname{Tr}\left(M^{j k}\right) \\
-\frac{3}{r^{5}} r_{j k} M^{j k}+\text { Fehlen }
\end{array}\right) \\
& \partial^{l} \psi \equiv a^{l} \quad{ }^{l} \text { Beschlemmigmg } \quad(F=m a)
\end{aligned}
$$

Wie stevere ich die gewünschte Genanigkeit?

