Oral Exam will take place on the same zoom as lecture. 20 min

Recall: LAX Method:

$$
\begin{aligned}
& \text { AX Method: } \\
& \rho_{i}^{(n+1)}=\frac{1}{2}\left(\rho_{i+1}^{(n)}+\rho_{i-1}^{(n)}\right) \stackrel{\swarrow}{-} \frac{1}{2} C\left(\rho_{i+1}^{(n)}-\rho_{i-1}^{(n)}\right) \\
& C=\frac{\Delta t u}{\Delta x}
\end{aligned}
$$

For linear advection equation.
Here the flux is $f(\rho)=\rho u$
Rewrite this LAX Method using fluxes gives:

$$
\rho_{i}^{(n+1)}=\frac{1}{2}\left(\rho_{i+1}^{(n)}+\rho_{i-1}^{(n)}\right)-\frac{\Delta t}{2 \Delta x}\left(f_{i+1}^{(n)}-f_{i-1}^{(n)}\right)
$$

Rewrite Upwind Method:

$$
\begin{aligned}
\rho_{i}^{(n+1)} & =\rho_{i}^{(n)}-\frac{\Delta t}{\Delta x}\left(f_{i}^{(n)}-f_{i-1}^{(n)}\right) \text { fo } u \geqslant 0 \\
& =\rho_{i}^{(n)}-\frac{\Delta t}{\Delta x}\left(f_{i+1}^{(n)}-f_{i}^{(n)}\right) \text { for } u<0
\end{aligned}
$$

Now for 1-D hydrodynamics we have 3 conservation equations:

1. Conservation of mass: $F=\rho u$
2. Conservation of monentiun: $F=\rho u^{2}+P$
3. Conservation of Energy: $F=u(E+P)$ Where P is the pressure
Now let the "State Vector" be $\underline{U}=\left(\begin{array}{l}\rho \\ \rho u \\ E\end{array}\right)$

$$
E(\underline{u})=\left[\rho u, \rho u^{2}+P, u(E+P)\right]
$$

little u is the velocity in x-direction
little u is the velocity in x-direction

$$
\frac{\partial \underline{u}}{\partial t}+\nabla \cdot F(\underline{U})=0
$$

Very general conservation of
"staff"

We have 3 equations, but 4 unknowns:

$$
\rho, u, P, E!
$$

$E=$ Kinetic Energy + Thermal Energy Density
$E=\frac{1}{2} \rho u^{2}+\rho e_{\kappa}$ thermal energy per unit mass (specific thermal energy)
We still have 4 mknowns:

$$
p, u, P, e
$$

- But we can introduce an equation of state (EOS) for the material.
- We will choose an ideal gas EOS:

$$
e=\frac{P}{(\gamma-1) \rho} \text { Ideal gas }
$$

$\gamma=\frac{f+2}{f}$ where f is the number of freedom of the particles in the gas

Monoatomic gas

$$
f=2 \Rightarrow \gamma=2
$$

$f=4$

2D Monoatomic gas

$$
\text { in 1-D: } \gamma=3
$$

$$
\begin{aligned}
E & =\frac{1}{2} \rho u^{2}+\frac{1}{2} P \\
F(u) & =[\rho u, \rho u^{2}+P, u(\underbrace{\frac{1}{2} \rho u^{2}+\frac{3}{2} P}_{E+P})]
\end{aligned}
$$

$$
1 \text {-D Mono }
$$

now

In finite volume let the value of \underline{U} in each cell be the average of the "material" in the cell :

$$
\langle u\rangle_{i}^{n}=\frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} u\left(x, t^{n}\right) d x
$$

More complicated than for lin advection because information flows in both directions.

$$
\begin{gathered}
\frac{\partial \underline{u}}{\partial t}+\nabla \cdot \underline{F}(\underline{u})=0 \\
\frac{\langle u\rangle_{i}^{n+1}-\langle u\rangle_{i}^{n}}{\Delta t} \frac{F_{i+\frac{1}{2}}^{n+1 / 2}-F_{i-\frac{1}{2}}^{n+1 / 2}}{\Delta x}=0
\end{gathered}
$$

Given that we have one state on the left and one state on the right, how do we approximate the flux though the boundary between them?

We average everything under fere green curve again.

3 waves (Characteristics) for 3 conservation laws!
$F\left(\underline{U}_{L}, \underline{u}_{R}\right) \leftarrow$ Riemann Solver
$D_{L}, D_{R} \leftarrow$ Discontinuity speed to the lift and to the right.

Lax-Friedrichs Riemann Solver:
Maces the simplification by assuming that $D_{L}=-D_{R}$; set to just the maximin discontinuity speed $D_{\max }$

$$
\begin{gathered}
F_{i-\frac{1}{2}}^{n}=\frac{1}{2}\left(F_{i}^{n}+F_{i-1}^{n}\right)-\frac{1}{2} D_{\max }\left(\underline{u}_{i}^{n}-\frac{u}{R_{i, \mu t}} \frac{n}{\left.\right|_{i-1}}\right) \\
D=|u|+C_{s} \\
C_{s}=\sqrt{\gamma \frac{p}{\rho}} \text { speed of sound. } \\
D_{\max }=\max \left(D_{L}, D_{R}\right) \\
\left.E_{i-\frac{1}{2}}^{n}=\frac{1}{2}\left[F\left(\underline{u}_{i}^{n}\right)+\underline{F}_{i} \underline{u}_{i-1}^{n}\right)\right] \\
-\frac{1}{2} \max \left(\left|u_{i-1}\right|+C_{s_{i-1}},\left|u_{i}\right|+C_{s_{i}}\right)\left[\underline{u}_{i}^{n}-\underline{u}_{i-1}^{n}\right]
\end{gathered}
$$

Back to onus time-space centered approximation of the averages in cells:

$$
\underline{u}_{i}^{n+1}=\underline{u}_{i}^{n}-\frac{\Delta t}{\Delta x}\left[F_{i+\frac{1}{2}}^{n+1 / 2}-F_{i-\frac{1}{2}}^{n+\frac{1}{2}}\right]
$$

We make a predictor step to $n+1 / 2$ in oder to calculate these fluxes:

$$
\underline{U}_{i}^{n+1 / 2}=\underline{U}_{i}^{n}-\frac{\frac{1}{2} \Delta t}{\Delta x}\left[F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right] \begin{gathered}
\text { predictor } \\
\text { step }
\end{gathered}
$$

follow this with the update Step.

$$
\underline{u}_{i}^{n+1}=\underline{u}_{i}^{n}-\frac{\Delta t}{\Delta x}\left[F\left({ }^{*} u_{i}^{n+1 / 2}, u_{i+1}^{n+1 / 2}\right)-\right.
$$

$$
\left.F\left(u_{i-1}^{n+1 / 2}, u_{i}^{n+1 / 2}\right)\right]
$$

Method C
Method [A] the siginal LAX Method

$$
\underline{u}_{i}^{n+1}=\frac{1}{2}\left(\underline{u}_{i+1}^{n}+u_{i-1}^{n}\right)-\frac{\Delta t}{2 \Delta x}\left(F_{i+1}^{n}-F_{i-1}^{n}\right)
$$

should work, but won't conserve anything.

Exercise: Make a 1-D code with periodic B.C.s like previously but now with the state vector \underline{U} in each cell.
2 IC for each or methods A, BA Try a "shock tube" problem:

Try a Sedov-Taylor Blast wave!

$$
\begin{array}{r}
\text { one cell } \begin{array}{r}
\text { has } e=1 \\
\Delta=1, u=0 \\
e=10^{-5}
\end{array} \\
\left.\Delta t=? \quad \text { Can use } D_{\max }<\frac{\Delta x}{\Delta t}\right)
\end{array}
$$

Comant Condition

