$$
\begin{aligned}
& \int_{y_{n}}^{y_{n+1}} d y=\int_{x_{n}}^{x_{n+1}} f(x, y) d x \\
& y_{n+1}-y_{n}=h \cdot f\left(x_{n}, y_{n}\right) \\
& y_{n+1}=y_{n}+h \cdot f\left(x_{n}, y_{n}\right)
\end{aligned}
$$

initial
condition

Error depends on the choice ob h, step size.
Truncation Error: Error associated with the algorithm on method, and not the precision of the floating point calculations.
Local Error: Error oven one step Global Error: Error oven a fixed Interval

X: a global interval

$$
\int_{x_{n}}^{x_{n+1}} f(x, y) d x
$$

$$
f(x, y(x))=f(x, \underbrace{y\left(x_{n}+h\right)}_{T_{\text {ag }} \text { for }})
$$

Taylor expand

$$
\cong f\left(x, y_{n}+\left.h \cdot \frac{d y}{d x}\right|_{x_{n}}\right)
$$

small

$$
\begin{aligned}
f(x, y(x)) & \cong f\left(x, y_{n}\right) \\
& +\ldots|d y|
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mall } \\
& \text { Taylor expand } \\
& \text { again }
\end{aligned}
$$ again

$$
\begin{aligned}
& t(x, y(x))-T\left(x, y_{n}\right) \\
& +\left.n \cdot \frac{d y}{d x}\right|_{x_{n}} f^{\prime}\left(x, y_{n}\right) \\
& \text { slope at } x_{n} \text { is } \\
& \int_{x_{n}}^{x_{n+1}} f(x, y(x)) d x \cong \int_{x_{n}}^{x_{n+1}}\left[f\left(x, y_{n}\right)+h f\left(x_{n}, y_{n}\right) f^{\prime}\left(x, y_{n}\right)\right] d x
\end{aligned}
$$

Fix the function values at our initial condition at x_{n}

$$
\cong h \cdot f\left(x_{n}, y_{n}\right)+h^{2} f\left(x_{n}, y_{n}\right) f^{\prime}\left(x_{n}, y_{n}\right)
$$

Local Error: $\theta\left(h^{2}\right)$
How many steps in the fixed interval?

$$
N_{\text {steps }}=\frac{X}{h}
$$

Global error $\Rightarrow \theta(h)$
Quite Poor
Forward Euler Method

Can we do better?

$$
\left(A=h \cdot f\left(x_{n}+\frac{1}{2} h, y\left(x_{n}+\frac{1}{2} h\right)\right)\right.
$$

Use Forward Euler to get this

$$
\begin{array}{r}
y_{n+\frac{1}{2}} \cong y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right) \\
y_{n+1}-y_{n}=h \cdot f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right)\right) \\
Q \\
2 \text { evaluations of } f \text { here } \\
\text { (so wore expensive!) }
\end{array}
$$

Mid-point Runge-Kutta
Local error: $\theta\left(h^{3}\right)$
Global ensor: $\theta\left(h^{2}\right)$
$4^{\text {th }}$ - Order Range - Gutta

$$
\begin{aligned}
\frac{k_{1}}{k_{2}} & =h \cdot f\left(x_{n}, y_{n}\right) \\
\frac{k_{3}}{} & \left.=h \cdot \frac{f}{\left(x_{n}\right.}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right) \\
\frac{k_{4}}{2} & =h \cdot f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right) \\
y_{n+1} & =y_{n}+\frac{k_{1}}{6}+\frac{k_{n}}{3}+\frac{k_{3}}{3}+\frac{k_{3}}{3}+\frac{k_{4}}{6}+\theta\left(h^{5}\right)
\end{aligned}
$$

These are explicit methods.
Implicit Method: much more expensive

$$
y_{n+1}=y_{n}+h \cdot f\left(\frac{1}{2}\left(x_{n}+x_{n+1}\right), \frac{1}{2}\left(y_{n}+y_{n+1}\right)\right)
$$

- Write a linear system
- Write a linear system a guess for y_{n+1}
- iterate, stand una noun ... juts
 Unstable
STABILITY

Predator - Prey Behaviom
Foxes and Mice f

$$
m
$$

Lotka - Voltera Model (1920) without foxes: mice population grows without limitation.

$$
\frac{\Delta m}{m}=k_{m} \cdot \Delta t
$$

A constant Birthrate
But if foxes ae around the population reduces proportional to the number of foxes.

$$
\begin{aligned}
\frac{\Delta m}{m} & =k_{m} \cdot \Delta t-k_{m f} \cdot f \cdot \Delta t \\
\frac{d m}{d t} \approx \frac{\Delta m}{\Delta t} & =(k_{m} \cdot m-\underbrace{k_{m f} \cdot m \cdot f}_{\begin{array}{c}
\text { number of } \\
\text { encounters }
\end{array}}) \\
\frac{\Delta f}{f} & =-k_{f}^{k_{f} \Delta t} \text { Death vote for foxes }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta f}{f}=-k_{f} \Delta t+k_{f m} m \Delta t \\
& \Delta f=\left(-k_{f} \cdot f+k_{f m} \cdot f \cdot m\right) \Delta t \\
& \frac{d m}{d t}=k_{m} \cdot m-k_{m f} \cdot m f \\
& \frac{d f}{d t}=-k_{f} \cdot f+k_{f m} \cdot f_{m}
\end{aligned}
$$

Solve these given solve initial condition for foxes and mice.

$$
\begin{array}{ll}
k_{m}=2 & I \cdot C . \tag{IRC.}\\
k_{m f}=0.02 & m(0)=100 \\
k_{f m}=0.01 & f(0)=15 \\
k_{f}=1.06 & y=\langle m(t), f(t)\rangle
\end{array}
$$

2 PLOTS:

